Cross-Modal Attention Alignment Network with Auxiliary Text Description for zero-shot sketch-based image retrieval
- URL: http://arxiv.org/abs/2407.00979v1
- Date: Mon, 1 Jul 2024 05:32:06 GMT
- Title: Cross-Modal Attention Alignment Network with Auxiliary Text Description for zero-shot sketch-based image retrieval
- Authors: Hanwen Su, Ge Song, Kai Huang, Jiyan Wang, Ming Yang,
- Abstract summary: We propose an approach called Cross-Modal Attention Alignment Network with Auxiliary Text Description for zero-shot sketch-based image retrieval.
Our key innovation lies in the usage of text data as auxiliary information for images, thus leveraging the inherent zero-shot generalization ability that language offers.
- Score: 10.202562518113677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of zero-shot sketch-based image retrieval (ZS-SBIR). The prior methods tackle the problem in a two-modality setting with only category labels or even no textual information involved. However, the growing prevalence of Large-scale pre-trained Language Models (LLMs), which have demonstrated great knowledge learned from web-scale data, can provide us with an opportunity to conclude collective textual information. Our key innovation lies in the usage of text data as auxiliary information for images, thus leveraging the inherent zero-shot generalization ability that language offers. To this end, we propose an approach called Cross-Modal Attention Alignment Network with Auxiliary Text Description for zero-shot sketch-based image retrieval. The network consists of three components: (i) a Description Generation Module that generates textual descriptions for each training category by prompting an LLM with several interrogative sentences, (ii) a Feature Extraction Module that includes two ViTs for sketch and image data, a transformer for extracting tokens of sentences of each training category, finally (iii) a Cross-modal Alignment Module that exchanges the token features of both text-sketch and text-image using cross-attention mechanism, and align the tokens locally and globally. Extensive experiments on three benchmark datasets show our superior performances over the state-of-the-art ZS-SBIR methods.
Related papers
- mTREE: Multi-Level Text-Guided Representation End-to-End Learning for Whole Slide Image Analysis [16.472295458683696]
Multi-modal learning adeptly integrates visual and textual data, but its application to histopathology image and text analysis remains challenging.
We introduce Multi-Level Text-Guided Representation End-to-End Learning (mTREE)
This novel text-guided approach effectively captures multi-scale Whole Slide Images (WSIs) by utilizing information from accompanying textual pathology information.
arXiv Detail & Related papers (2024-05-28T04:47:44Z) - TextCoT: Zoom In for Enhanced Multimodal Text-Rich Image Understanding [91.30065932213758]
Large Multimodal Models (LMMs) have sparked a surge in research aimed at harnessing their remarkable reasoning abilities.
We propose TextCoT, a novel Chain-of-Thought framework for text-rich image understanding.
Our method is free of extra training, offering immediate plug-and-play functionality.
arXiv Detail & Related papers (2024-04-15T13:54:35Z) - You'll Never Walk Alone: A Sketch and Text Duet for Fine-Grained Image Retrieval [120.49126407479717]
We introduce a novel compositionality framework, effectively combining sketches and text using pre-trained CLIP models.
Our system extends to novel applications in composed image retrieval, domain transfer, and fine-grained generation.
arXiv Detail & Related papers (2024-03-12T00:27:18Z) - Cross-Modal Retrieval Meets Inference:Improving Zero-Shot Classification
with Cross-Modal Retrieval [29.838375158101027]
Contrastive language-image pre-training (CLIP) has demonstrated remarkable zero-shot classification ability.
We propose X-MoRe, a novel inference method comprising two key steps: (1) cross-modal retrieval and (2) modal-confidence-based ensemble.
X-MoRe demonstrates robust performance across a diverse set of tasks without the need for additional training.
arXiv Detail & Related papers (2023-08-29T13:02:35Z) - Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval [11.798006331912056]
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions.
We propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts.
arXiv Detail & Related papers (2023-07-18T08:23:46Z) - Zero-Shot Everything Sketch-Based Image Retrieval, and in Explainable
Style [40.112168046676125]
This paper studies the problem of zero-short sketch-based image retrieval (ZS-SBIR)
Key innovation lies with the realization that such a cross-modal matching problem could be reduced to comparisons of groups of key local patches.
Experiments show ours indeed delivers superior performances across all ZS-SBIR settings.
arXiv Detail & Related papers (2023-03-25T03:52:32Z) - Cross-Modal Fusion Distillation for Fine-Grained Sketch-Based Image
Retrieval [55.21569389894215]
We propose a cross-attention framework for Vision Transformers (XModalViT) that fuses modality-specific information instead of discarding them.
Our framework first maps paired datapoints from the individual photo and sketch modalities to fused representations that unify information from both modalities.
We then decouple the input space of the aforementioned modality fusion network into independent encoders of the individual modalities via contrastive and relational cross-modal knowledge distillation.
arXiv Detail & Related papers (2022-10-19T11:50:14Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
This paper presents a weakly supervised pre-training method that can acquire effective scene text representations.
Our network consists of an image encoder and a character-aware text encoder that extract visual and textual features.
Experiments show that our pre-trained model improves F-score by +2.5% and +4.8% while transferring its weights to other text detection and spotting networks.
arXiv Detail & Related papers (2022-03-08T08:10:45Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Semantically Tied Paired Cycle Consistency for Any-Shot Sketch-based
Image Retrieval [55.29233996427243]
Low-shot sketch-based image retrieval is an emerging task in computer vision.
In this paper, we address any-shot, i.e. zero-shot and few-shot, sketch-based image retrieval (SBIR) tasks.
For solving these tasks, we propose a semantically aligned cycle-consistent generative adversarial network (SEM-PCYC)
Our results demonstrate a significant boost in any-shot performance over the state-of-the-art on the extended version of the Sketchy, TU-Berlin and QuickDraw datasets.
arXiv Detail & Related papers (2020-06-20T22:43:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.