論文の概要: Discrete Contrastive Learning for Diffusion Policies in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2503.05229v1
- Date: Fri, 07 Mar 2025 08:26:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:21:18.349235
- Title: Discrete Contrastive Learning for Diffusion Policies in Autonomous Driving
- Title(参考訳): 自律運転における拡散政策の離散的コントラスト学習
- Authors: Kalle Kujanpää, Daulet Baimukashev, Farzeen Munir, Shoaib Azam, Tomasz Piotr Kucner, Joni Pajarinen, Ville Kyrki,
- Abstract要約: 本研究では,既存の運転データから,コントラスト学習を利用して運転スタイルの辞書を抽出する手法を提案する。
我々の経験的評価は、我々のアプローチが生み出す行動が、機械学習ベースのベースライン手法よりも安全かつ人間的であることを確認した。
- 参考スコア(独自算出の注目度): 18.624545462468642
- License:
- Abstract: Learning to perform accurate and rich simulations of human driving behaviors from data for autonomous vehicle testing remains challenging due to human driving styles' high diversity and variance. We address this challenge by proposing a novel approach that leverages contrastive learning to extract a dictionary of driving styles from pre-existing human driving data. We discretize these styles with quantization, and the styles are used to learn a conditional diffusion policy for simulating human drivers. Our empirical evaluation confirms that the behaviors generated by our approach are both safer and more human-like than those of the machine-learning-based baseline methods. We believe this has the potential to enable higher realism and more effective techniques for evaluating and improving the performance of autonomous vehicles.
- Abstract(参考訳): 自動運転車テストのデータから、人間の運転行動の正確で豊かなシミュレーションを行うための学習は、人間の運転スタイルの多様性と分散のため、依然として困難である。
従来の運転データから運転スタイルの辞書を抽出するために、対照的な学習を活用する新しいアプローチを提案することで、この問題に対処する。
我々はこれらのスタイルを量子化で識別し、人間のドライバーをシミュレートするための条件付き拡散ポリシーを学習するために使用される。
我々の経験的評価は、我々のアプローチが生み出す行動が、機械学習ベースのベースライン手法よりも安全かつ人間的であることを確認した。
これは、自動運転車の性能を評価し改善するための、より高いリアリズムとより効果的な技術を可能にする可能性がある、と私たちは信じています。
関連論文リスト
- Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Imitation Is Not Enough: Robustifying Imitation with Reinforcement
Learning for Challenging Driving Scenarios [147.16925581385576]
シミュレーション学習と強化学習を組み合わせることで,運転方針の安全性と信頼性が大幅に向上することを示す。
都会の運転データ100万マイル以上でポリシーを訓練し、異なるレベルの衝突確率でグループ化されたテストシナリオにおける有効性を測定する。
論文 参考訳(メタデータ) (2022-12-21T23:59:33Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
データ駆動シミュレータは、ポリシー学習の駆動に高いデータ効率を約束する。
小さな基盤となるデータセットは、インタラクティブな運転を学ぶための興味深い、挑戦的なエッジケースを欠いていることが多い。
本研究では,ロバストな運転方針の学習に塗装されたアドカーを用いたシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T20:14:02Z) - Learning to drive from a world on rails [78.28647825246472]
モデルベースアプローチによって,事前記録された運転ログからインタラクティブな視覚ベースの運転方針を学習する。
世界の前方モデルは、あらゆる潜在的な運転経路の結果を予測する運転政策を監督する。
提案手法は,carla リーダボードにまずランク付けし,40 倍少ないデータを用いて25%高い運転スコアを得た。
論文 参考訳(メタデータ) (2021-05-03T05:55:30Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
自動運転用画像入力における学習アルゴリズムw.r.tの堅牢性を解析するためのフレームワークについて紹介する。
感度分析の結果を用いて, 「操縦への学習」 タスクの総合的性能を向上させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-26T02:08:07Z) - Behaviorally Diverse Traffic Simulation via Reinforcement Learning [16.99423598448411]
本稿では,自律運転エージェントのための簡易なポリシー生成アルゴリズムを提案する。
提案アルゴリズムは,深層強化学習の表現能力と探索能力を活用することで,多様性と運転能力のバランスをとる。
本手法の有効性を,いくつかの挑戦的な交差点シーンにおいて実験的に示す。
論文 参考訳(メタデータ) (2020-11-11T12:49:11Z) - Action-Based Representation Learning for Autonomous Driving [8.296684637620551]
本稿では,行動に基づく運転データを学習表現に用いることを提案する。
提案手法を用いて事前学習した空き時間に基づく運転モデルでは,比較的少量の弱注釈画像が有効であることを示す。
論文 参考訳(メタデータ) (2020-08-21T10:49:13Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
本稿では,より正確かつ人間らしく運転できるエンド・ツー・エンド駆動モデルについて検討する。
HERE Technologiesのセマンティックマップとビジュアルマップを活用し、既存のDrive360データセットを拡張します。
私たちのモデルは、実世界の運転データ60時間3000kmのDrive360+HEREデータセットでトレーニングされ、評価されています。
論文 参考訳(メタデータ) (2020-07-10T22:25:27Z) - Deep Reinforcement Learning for Human-Like Driving Policies in Collision
Avoidance Tasks of Self-Driving Cars [1.160208922584163]
自動運転ポリシーを生成するために,モデルフリーで深層強化学習手法を導入する。
本研究では,2車線道路における静的障害物回避タスクをシミュレーションで検討する。
このアプローチが人間ライクな運転ポリシーにつながることを実証します。
論文 参考訳(メタデータ) (2020-06-07T18:20:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。