論文の概要: Deep Reinforcement Learning for Human-Like Driving Policies in Collision
Avoidance Tasks of Self-Driving Cars
- arxiv url: http://arxiv.org/abs/2006.04218v2
- Date: Fri, 19 Jun 2020 16:12:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 07:55:42.749035
- Title: Deep Reinforcement Learning for Human-Like Driving Policies in Collision
Avoidance Tasks of Self-Driving Cars
- Title(参考訳): 自動運転車の衝突回避作業における人間ライクな運転ポリシーの深層強化学習
- Authors: Ran Emuna, Avinoam Borowsky, Armin Biess
- Abstract要約: 自動運転ポリシーを生成するために,モデルフリーで深層強化学習手法を導入する。
本研究では,2車線道路における静的障害物回避タスクをシミュレーションで検討する。
このアプローチが人間ライクな運転ポリシーにつながることを実証します。
- 参考スコア(独自算出の注目度): 1.160208922584163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The technological and scientific challenges involved in the development of
autonomous vehicles (AVs) are currently of primary interest for many automobile
companies and research labs. However, human-controlled vehicles are likely to
remain on the roads for several decades to come and may share with AVs the
traffic environments of the future. In such mixed environments, AVs should
deploy human-like driving policies and negotiation skills to enable smooth
traffic flow. To generate automated human-like driving policies, we introduce a
model-free, deep reinforcement learning approach to imitate an experienced
human driver's behavior. We study a static obstacle avoidance task on a
two-lane highway road in simulation (Unity). Our control algorithm receives a
stochastic feedback signal from two sources: a model-driven part, encoding
simple driving rules, such as lane-keeping and speed control, and a stochastic,
data-driven part, incorporating human expert knowledge from driving data. To
assess the similarity between machine and human driving, we model distributions
of track position and speed as Gaussian processes. We demonstrate that our
approach leads to human-like driving policies.
- Abstract(参考訳): 自動運転車(avs)の開発に関わる技術的および科学的課題は、現在多くの自動車会社や研究所にとって主要な関心事となっている。
しかし、人間が操縦する車両は今後数十年にわたって路上に留まり、将来の交通環境についてavsと共有する可能性がある。
このような混合環境では、AVはスムーズなトラフィックフローを実現するために人間のような運転方針と交渉スキルを展開すべきである。
自動運転ポリシーを生成するために,経験豊富なドライバの動作を模倣するモデルのない深層強化学習手法を提案する。
本研究では,2車線道路における静的障害物回避タスクをシミュレーション(Unity)で検討する。
制御アルゴリズムは,車線保持や速度制御などの単純な駆動ルールを符号化するモデル駆動部と,運転データから人間の知識を取り入れた確率的データ駆動部という2つのソースから確率的フィードバック信号を受信する。
機械と人間の運転の類似性を評価するため、ガウス過程として軌道位置と速度の分布をモデル化した。
このアプローチが人間ライクな運転ポリシーにつながることを実証します。
関連論文リスト
- Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Towards Safe Autonomy in Hybrid Traffic: Detecting Unpredictable
Abnormal Behaviors of Human Drivers via Information Sharing [21.979007506007733]
提案アルゴリズムは高速道路と都市交通の両方において優れた検出性能を有することを示す。
最高の性能は97.3%、平均検出遅延1.2、誤警報0である。
論文 参考訳(メタデータ) (2023-08-23T18:24:28Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
本研究では、DQN(Deep Q-networks)とTRPO(Trust Region Policy Optimization)の2つのDRLアルゴリズムの実装、評価、比較を行う。
設計されたComplexRoads環境で訓練されたモデルは、他の運転操作にうまく適応でき、全体的な性能が期待できる。
論文 参考訳(メタデータ) (2023-06-20T11:41:01Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
本稿では,他のドライバの動作から不確実性が生ずる移動トラフィックにマージする複雑なタスクに焦点を当てる。
我々はこの問題を部分的に観測可能なマルコフ決定プロセス(POMDP)とみなし、モンテカルロ木探索でオンラインに解決する。
POMDPの解決策は、接近する車に道を譲る、前方の車から安全な距離を維持する、あるいは交通に合流するといった、高いレベルの運転操作を行う政策である。
論文 参考訳(メタデータ) (2023-03-29T16:12:45Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Exploring the trade off between human driving imitation and safety for
traffic simulation [0.34410212782758043]
運転方針の学習において,人間の運転の模倣と安全維持との間にはトレードオフが存在することを示す。
両目的を協調的に改善する多目的学習アルゴリズム(MOPPO)を提案する。
論文 参考訳(メタデータ) (2022-08-09T14:30:19Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
データ駆動シミュレータは、ポリシー学習の駆動に高いデータ効率を約束する。
小さな基盤となるデータセットは、インタラクティブな運転を学ぶための興味深い、挑戦的なエッジケースを欠いていることが多い。
本研究では,ロバストな運転方針の学習に塗装されたアドカーを用いたシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T20:14:02Z) - A Survey on Autonomous Vehicle Control in the Era of Mixed-Autonomy:
From Physics-Based to AI-Guided Driving Policy Learning [7.881140597011731]
本稿では、人工知能(AI)から自律走行車(AV)制御のための輸送工学分野への潜在的に有用なモデルと方法論の紹介と概要を提供する。
我々は、AI誘導手法の最先端の応用について議論し、機会と障害を特定し、オープンな質問を提起し、AIが混合自律において役割を果たす可能性のあるビルディングブロックとエリアを提案する。
論文 参考訳(メタデータ) (2020-07-10T04:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。