L-FUSION: Laplacian Fetal Ultrasound Segmentation & Uncertainty Estimation
- URL: http://arxiv.org/abs/2503.05245v2
- Date: Wed, 12 Mar 2025 10:11:17 GMT
- Title: L-FUSION: Laplacian Fetal Ultrasound Segmentation & Uncertainty Estimation
- Authors: Johanna P. Müller, Robert Wright, Thomas G. Day, Lorenzo Venturini, Samuel F. Budd, Hadrien Reynaud, Joseph V. Hajnal, Reza Razavi, Bernhard Kainz,
- Abstract summary: L-fusion is a framework that integrates uncertainty quantification through unsupervised, normative learning and large-scale foundation models.<n>It achieves reliable abnormality quantification for instant diagnostic feedback.<n>It improves uncertainty interpretation and removes the need for manual disease-labelling.
- Score: 6.626853161057203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate analysis of prenatal ultrasound (US) is essential for early detection of developmental anomalies. However, operator dependency and technical limitations (e.g. intrinsic artefacts and effects, setting errors) can complicate image interpretation and the assessment of diagnostic uncertainty. We present L-FUSION (Laplacian Fetal US Segmentation with Integrated FoundatiON models), a framework that integrates uncertainty quantification through unsupervised, normative learning and large-scale foundation models for robust segmentation of fetal structures in normal and pathological scans. We propose to utilise the aleatoric logit distributions of Stochastic Segmentation Networks and Laplace approximations with fast Hessian estimations to estimate epistemic uncertainty only from the segmentation head. This enables us to achieve reliable abnormality quantification for instant diagnostic feedback. Combined with an integrated Dropout component, L-FUSION enables reliable differentiation of lesions from normal fetal anatomy with enhanced uncertainty maps and segmentation counterfactuals in US imaging. It improves epistemic and aleatoric uncertainty interpretation and removes the need for manual disease-labelling. Evaluations across multiple datasets show that L-FUSION achieves superior segmentation accuracy and consistent uncertainty quantification, supporting on-site decision-making and offering a scalable solution for advancing fetal ultrasound analysis in clinical settings.
Related papers
- Enhancing Uncertainty Estimation in Semantic Segmentation via Monte-Carlo Frequency Dropout [2.542402342792592]
Monte-Carlo (MC) Dropout provides a practical solution for estimating predictive distributions in deterministic neural networks.
Traditional dropout, applied within the signal space, may fail to account for frequency-related noise common in medical imaging.
A novel approach extends Dropout to the frequency domain, allowing attenuation of signal variations during inference.
arXiv Detail & Related papers (2025-01-20T03:54:30Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Interpretability of Uncertainty: Exploring Cortical Lesion Segmentation in Multiple Sclerosis [33.91263917157504]
Uncertainty quantification (UQ) has become critical for evaluating the reliability of artificial intelligence systems.
This study addresses the interpretability of instance-wise uncertainty values in deep learning models for focal lesion segmentation in magnetic resonance imaging.
arXiv Detail & Related papers (2024-07-08T09:13:30Z) - Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation [8.64414399041931]
Uncertainty quantification (UQ) is an indicator of the trustworthiness of automated deep-learning (DL) tools in the context of white matter lesion (WML) segmentation.
We develop measures for quantifying uncertainty at lesion and patient scales, derived from structural prediction discrepancies.
The results from a multi-centric MRI dataset of 444 patients demonstrate that our proposed measures more effectively capture model errors at the lesion and patient scales.
arXiv Detail & Related papers (2023-11-15T13:04:57Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.