Interpretability of Uncertainty: Exploring Cortical Lesion Segmentation in Multiple Sclerosis
- URL: http://arxiv.org/abs/2407.05761v1
- Date: Mon, 8 Jul 2024 09:13:30 GMT
- Title: Interpretability of Uncertainty: Exploring Cortical Lesion Segmentation in Multiple Sclerosis
- Authors: Nataliia Molchanova, Alessandro Cagol, Pedro M. Gordaliza, Mario Ocampo-Pineda, Po-Jui Lu, Matthias Weigel, Xinjie Chen, Adrien Depeursinge, Cristina Granziera, Henning Müller, Meritxell Bach Cuadra,
- Abstract summary: Uncertainty quantification (UQ) has become critical for evaluating the reliability of artificial intelligence systems.
This study addresses the interpretability of instance-wise uncertainty values in deep learning models for focal lesion segmentation in magnetic resonance imaging.
- Score: 33.91263917157504
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Uncertainty quantification (UQ) has become critical for evaluating the reliability of artificial intelligence systems, especially in medical image segmentation. This study addresses the interpretability of instance-wise uncertainty values in deep learning models for focal lesion segmentation in magnetic resonance imaging, specifically cortical lesion (CL) segmentation in multiple sclerosis. CL segmentation presents several challenges, including the complexity of manual segmentation, high variability in annotation, data scarcity, and class imbalance, all of which contribute to aleatoric and epistemic uncertainty. We explore how UQ can be used not only to assess prediction reliability but also to provide insights into model behavior, detect biases, and verify the accuracy of UQ methods. Our research demonstrates the potential of instance-wise uncertainty values to offer post hoc global model explanations, serving as a sanity check for the model. The implementation is available at https://github.com/NataliiaMolch/interpret-lesion-unc.
Related papers
- To Believe or Not to Believe Your LLM [51.2579827761899]
We explore uncertainty quantification in large language models (LLMs)
We derive an information-theoretic metric that allows to reliably detect when only epistemic uncertainty is large.
We conduct a series of experiments which demonstrate the advantage of our formulation.
arXiv Detail & Related papers (2024-06-04T17:58:18Z) - Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation [8.64414399041931]
Uncertainty quantification (UQ) is an indicator of the trustworthiness of automated deep-learning (DL) tools in the context of white matter lesion (WML) segmentation.
We develop measures for quantifying uncertainty at lesion and patient scales, derived from structural prediction discrepancies.
The results from a multi-centric MRI dataset of 444 patients demonstrate that our proposed measures more effectively capture model errors at the lesion and patient scales.
arXiv Detail & Related papers (2023-11-15T13:04:57Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results.
Recent developments in distribution-free uncertainty quantification present practical solutions for these issues.
We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity.
arXiv Detail & Related papers (2022-07-05T18:01:20Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Deep Quantile Regression for Uncertainty Estimation in Unsupervised and
Supervised Lesion Detection [0.0]
Uncertainty is important in critical applications such as anomaly or lesion detection and clinical diagnosis.
In this work, we focus on using quantile regression to estimate aleatoric uncertainty and use it for estimating uncertainty in both supervised and unsupervised lesion detection problems.
We show how quantile regression can be used to characterize expert disagreement in the location of lesion boundaries.
arXiv Detail & Related papers (2021-09-20T08:50:21Z) - Joint Dermatological Lesion Classification and Confidence Modeling with
Uncertainty Estimation [23.817227116949958]
We propose an overall framework that jointly considers dermatological classification and uncertainty estimation together.
The estimated confidence of each feature to avoid uncertain feature and undesirable shift is pooled from confidence network.
We demonstrate the potential of the proposed approach in two state-of-the-art dermoscopic datasets.
arXiv Detail & Related papers (2021-07-19T11:54:37Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.