論文の概要: Jailbreaking is (Mostly) Simpler Than You Think
- arxiv url: http://arxiv.org/abs/2503.05264v1
- Date: Fri, 07 Mar 2025 09:28:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:22:54.179737
- Title: Jailbreaking is (Mostly) Simpler Than You Think
- Title(参考訳): ジェイルブレイクは思ったよりシンプル
- Authors: Mark Russinovich, Ahmed Salem,
- Abstract要約: 我々は、AIの安全性メカニズムをバイパスする新しい最適化不要な手法であるContext Compliance Attack (CCA)を紹介する。
CCAは、多くのデプロイされたAIシステムに固有の基本的なアーキテクチャ上の脆弱性を利用する。
- 参考スコア(独自算出の注目度): 2.7174461714624805
- License:
- Abstract: We introduce the Context Compliance Attack (CCA), a novel, optimization-free method for bypassing AI safety mechanisms. Unlike current approaches -- which rely on complex prompt engineering and computationally intensive optimization -- CCA exploits a fundamental architectural vulnerability inherent in many deployed AI systems. By subtly manipulating conversation history, CCA convinces the model to comply with a fabricated dialogue context, thereby triggering restricted behavior. Our evaluation across a diverse set of open-source and proprietary models demonstrates that this simple attack can circumvent state-of-the-art safety protocols. We discuss the implications of these findings and propose practical mitigation strategies to fortify AI systems against such elementary yet effective adversarial tactics.
- Abstract(参考訳): 我々は、AIの安全性メカニズムをバイパスする新しい最適化不要な手法であるContext Compliance Attack (CCA)を紹介する。
複雑なプロンプトエンジニアリングと計算集約的な最適化に依存する現在のアプローチとは異なり、CCAは多くのデプロイされたAIシステムに固有の基本的なアーキテクチャ上の脆弱性を利用する。
会話履歴を微妙に操作することで、CCAはモデルに対して、製造された会話コンテキストに従うように説得し、制限された振る舞いを引き起こす。
さまざまなオープンソースおよびプロプライエタリなモデルに対する評価は、この単純な攻撃が最先端の安全プロトコルを回避できることを示している。
本稿では,これらの知見がもたらす意味を考察し,このような基本的かつ効果的な敵戦術に対して,AIシステムを強化するための実践的緩和戦略を提案する。
関連論文リスト
- Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversationは、新しいマルチターンジェイルブレイクフレームワークである。
有害なクエリを良心的な推論タスクに再構成する。
RACEは,複雑な会話シナリオにおいて,最先端攻撃の有効性を実現する。
論文 参考訳(メタデータ) (2025-02-16T09:27:44Z) - How vulnerable is my policy? Adversarial attacks on modern behavior cloning policies [22.52780232632902]
本稿では,LfD(Learning from Demonstration)アルゴリズムに対する敵対的攻撃の包括的研究について述べる。
我々は,これらの手法の脆弱性について,標的外,標的外,普遍的摂動に対する検討を行った。
いくつかのロボット操作のシミュレーション実験により、現在の手法のほとんどは敵の摂動に非常に弱いことが判明した。
論文 参考訳(メタデータ) (2025-02-06T01:17:39Z) - Fundamental Risks in the Current Deployment of General-Purpose AI Models: What Have We (Not) Learnt From Cybersecurity? [60.629883024152576]
大規模言語モデル(LLM)は、幅広いユースケースで急速にデプロイされている。
OpenAIs Alteraは、自律性の向上、データアクセス、実行機能の一例に過ぎない。
これらの方法には、さまざまなサイバーセキュリティ上の課題が伴う。
論文 参考訳(メタデータ) (2024-12-19T14:44:41Z) - SoK: A Systems Perspective on Compound AI Threats and Countermeasures [3.458371054070399]
我々は、複合AIシステムに適用可能な、異なるソフトウェアとハードウェアの攻撃について議論する。
複数の攻撃機構を組み合わせることで、孤立攻撃に必要な脅威モデル仮定をいかに削減できるかを示す。
論文 参考訳(メタデータ) (2024-11-20T17:08:38Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
大型言語モデル(LLM)は、エンボディドインテリジェンスの発展に変化をもたらした。
本稿では,このプロセスにおけるバックドアセキュリティの重大な脅威を明らかにする。
ほんの少しの文脈的デモンストレーションを毒殺しただけで、攻撃者はブラックボックスLDMの文脈的環境を隠蔽することができる。
論文 参考訳(メタデータ) (2024-08-06T01:20:12Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
本稿では,人工知能(AI)の攻撃的サイバーセキュリティへの統合について検討する。
サイバー攻撃をシミュレートし実行するために設計された、自律的なAIエージェントであるReaperAIを開発している。
ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
論文 参考訳(メタデータ) (2024-05-09T18:15:12Z) - Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts [80.0638227807621]
生成人工知能(GAI)モデルは、従来のAI手法よりも優れていることを示した。
ゲート機構による予測に複数の専門家モデルを使用するMoEは、可能なソリューションを提案する。
論文 参考訳(メタデータ) (2024-05-07T11:13:17Z) - Coordinated Flaw Disclosure for AI: Beyond Security Vulnerabilities [1.3225694028747144]
本稿では,機械学習(ML)問題の複雑度に合わせたコーディネート・フレーバー開示フレームワークを提案する。
本フレームワークは,拡張モデルカード,ダイナミックスコープ拡張,独立適応パネル,自動検証プロセスなどのイノベーションを導入している。
CFDはAIシステムに対する公的な信頼を著しく向上させる可能性があると我々は主張する。
論文 参考訳(メタデータ) (2024-02-10T20:39:04Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Vulnerabilities of Connectionist AI Applications: Evaluation and Defence [0.0]
この記事では、コネクショナリスト人工知能(AI)アプリケーションのITセキュリティを扱い、完全性への脅威に焦点を当てます。
脅威の包括的リストと軽減の可能性は、最先端の文献をレビューすることによって提示される。
緩和に関する議論は同様に、AIシステム自体のレベルに限定されず、むしろサプライチェーンの文脈でAIシステムを見ることを提唱している。
論文 参考訳(メタデータ) (2020-03-18T12:33:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。