論文の概要: Offensive Security for AI Systems: Concepts, Practices, and Applications
- arxiv url: http://arxiv.org/abs/2505.06380v1
- Date: Fri, 09 May 2025 18:58:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.816972
- Title: Offensive Security for AI Systems: Concepts, Practices, and Applications
- Title(参考訳): AIシステムに対する攻撃的セキュリティ - 概念,プラクティス,アプリケーション
- Authors: Josh Harguess, Chris M. Ward,
- Abstract要約: 従来の防御策は、AI駆動技術に直面するユニークで進化する脅威に対して、しばしば不足する。
本稿では、AIライフサイクル全体を通して脆弱性を明らかにするために、積極的な脅威シミュレーションと敵対的なテストを強調する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As artificial intelligence (AI) systems become increasingly adopted across sectors, the need for robust, proactive security strategies is paramount. Traditional defensive measures often fall short against the unique and evolving threats facing AI-driven technologies, making offensive security an essential approach for identifying and mitigating risks. This paper presents a comprehensive framework for offensive security in AI systems, emphasizing proactive threat simulation and adversarial testing to uncover vulnerabilities throughout the AI lifecycle. We examine key offensive security techniques, including weakness and vulnerability assessment, penetration testing, and red teaming, tailored specifically to address AI's unique susceptibilities. By simulating real-world attack scenarios, these methodologies reveal critical insights, informing stronger defensive strategies and advancing resilience against emerging threats. This framework advances offensive AI security from theoretical concepts to practical, actionable methodologies that organizations can implement to strengthen their AI systems against emerging threats.
- Abstract(参考訳): 人工知能(AI)システムがセクターにまたがって採用されるにつれて、堅牢で積極的なセキュリティ戦略の必要性が最重要である。
従来の防衛措置は、AI駆動技術が直面するユニークな、そして進化する脅威に対して不足することが多く、攻撃的セキュリティはリスクを特定し緩和するための重要なアプローチである。
本稿では,AIシステムにおける攻撃的セキュリティのための包括的フレームワークを提案する。
我々は、AIの独特な感受性に対処するために特別に調整された、脆弱性と脆弱性評価、侵入テスト、赤いチーム化など、主要な攻撃的セキュリティ技術について検討する。
現実世界の攻撃シナリオをシミュレートすることで、これらの手法は重要な洞察を示し、より強力な防御戦略を示し、出現する脅威に対して弾力性を高める。
このフレームワークは、AIの攻撃的セキュリティを理論的概念から実践的で実行可能な方法論に進化させ、組織が新たな脅威に対してAIシステムを強化できるようにします。
関連論文リスト
- Transforming Cyber Defense: Harnessing Agentic and Frontier AI for Proactive, Ethical Threat Intelligence [0.0]
この原稿は、エージェントAIとフロンティアAIの収束がサイバーセキュリティをいかに変えているかを説明する。
本稿では,リアルタイムモニタリング,自動インシデント応答,永続的学習といった,レジリエントでダイナミックな防衛エコシステム構築における役割について検討する。
我々のビジョンは、テクノロジーのイノベーションを、倫理的監視を揺るがさずに調和させることであり、未来のAIによるセキュリティソリューションが、新たなサイバー脅威を効果的に対処しつつ、公正性、透明性、説明責任の核心的価値を維持することを保証することである。
論文 参考訳(メタデータ) (2025-02-28T20:23:35Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-24T02:11:52Z) - Towards Robust and Secure Embodied AI: A Survey on Vulnerabilities and Attacks [22.154001025679896]
ロボットや自動運転車を含む身体的AIシステムは、現実のアプリケーションにますます統合されている。
これらの脆弱性は、センサーのスプーフィング、敵攻撃、タスクおよび動作計画における失敗を通じて現れる。
論文 参考訳(メタデータ) (2025-02-18T03:38:07Z) - Cyber Shadows: Neutralizing Security Threats with AI and Targeted Policy Measures [0.0]
サイバー脅威は個人、組織、社会レベルでリスクを引き起こす。
本稿では,AI駆動型ソリューションと政策介入を統合した包括的サイバーセキュリティ戦略を提案する。
論文 参考訳(メタデータ) (2025-01-03T09:26:50Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
本稿では、AI関連資産、脅威、対策、残留リスクの定量化のためのアプローチおよびツールであるThreatFinderAIを提案する。
このアプローチの実用性を評価するため、参加者はAIベースのヘルスケアプラットフォームのサイバーセキュリティ専門家によって開発された脅威モデルを再現するよう命じられた。
全体として、ソリューションのユーザビリティはよく認識され、脅威の識別とリスクの議論を効果的にサポートする。
論文 参考訳(メタデータ) (2024-03-11T08:40:01Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。