Leveraging Semantic Type Dependencies for Clinical Named Entity Recognition
- URL: http://arxiv.org/abs/2503.05373v1
- Date: Fri, 07 Mar 2025 12:29:21 GMT
- Title: Leveraging Semantic Type Dependencies for Clinical Named Entity Recognition
- Authors: Linh Le, Guido Zuccon, Gianluca Demartini, Genghong Zhao, Xia Zhang,
- Abstract summary: We exploit additional evidence by making use of domain-specific semantic type dependencies.<n>In some cases NER effectiveness can be significantly improved by making use of domain-specific semantic type dependencies.
- Score: 24.179910886684745
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Previous work on clinical relation extraction from free-text sentences leveraged information about semantic types from clinical knowledge bases as a part of entity representations. In this paper, we exploit additional evidence by also making use of domain-specific semantic type dependencies. We encode the relation between a span of tokens matching a Unified Medical Language System (UMLS) concept and other tokens in the sentence. We implement our method and compare against different named entity recognition (NER) architectures (i.e., BiLSTM-CRF and BiLSTM-GCN-CRF) using different pre-trained clinical embeddings (i.e., BERT, BioBERT, UMLSBert). Our experimental results on clinical datasets show that in some cases NER effectiveness can be significantly improved by making use of domain-specific semantic type dependencies. Our work is also the first study generating a matrix encoding to make use of more than three dependencies in one pass for the NER task.
Related papers
- Synthetic4Health: Generating Annotated Synthetic Clinical Letters [6.822926897514792]
Since clinical letters contain sensitive information, clinical-related datasets can not be widely applied in model training, medical research, and teaching.
This work aims to generate reliable, various, and de-identified synthetic clinical letters.
arXiv Detail & Related papers (2024-09-14T18:15:07Z) - Efficient Biomedical Entity Linking: Clinical Text Standardization with Low-Resource Techniques [0.0]
Multiple terms can refer to the same core concepts which can be referred as a clinical entity.
Ontologies like the Unified Medical Language System (UMLS) are developed and maintained to store millions of clinical entities.
We propose a suite of context-based and context-less remention techniques for performing the entity disambiguation.
arXiv Detail & Related papers (2024-05-24T01:14:33Z) - ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish [39.81302995670643]
This study presents ClinLinker, a novel approach employing a two-phase pipeline for medical entity linking.
It is based on a SapBERT-based bi-encoder and subsequent re-ranking with a cross-encoder, trained by following a contrastive-learning strategy to be tailored to medical concepts in Spanish.
arXiv Detail & Related papers (2024-04-09T15:04:27Z) - Named Entity Recognition via Machine Reading Comprehension: A Multi-Task
Learning Approach [50.12455129619845]
Named Entity Recognition (NER) aims to extract and classify entity mentions in the text into pre-defined types.
We propose to incorporate the label dependencies among entity types into a multi-task learning framework for better MRC-based NER.
arXiv Detail & Related papers (2023-09-20T03:15:05Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
We propose a novel method, referred to as ASAC, to solve the dilemma caused by the nested phenomenon.
The proposed method contains two key modules: the adaptive shared (AS) part and the attentive conditional random field (ACRF) module.
Our model could learn better entity representations by capturing the implicit distinctions and relationships between different categories of entities.
arXiv Detail & Related papers (2022-11-09T09:23:56Z) - Hierarchical Transformer Model for Scientific Named Entity Recognition [0.20646127669654832]
We present a simple and effective approach for Named Entity Recognition.
The main idea of our approach is to encode the input subword sequence with a pre-trained transformer such as BERT.
We evaluate our approach on three benchmark datasets for scientific NER.
arXiv Detail & Related papers (2022-03-28T12:59:06Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
This paper introduces the technique of contextualized word embedding to better capture the semantic meaning of each word based on its context.
We pre-train two deep contextualized language models, Clinical Embeddings from Language Model (C-ELMo) and Clinical Contextual String Embeddings (C-Flair)
Explicit experiments show that our models gain dramatic improvements compared to both static word embeddings and domain-generic language models.
arXiv Detail & Related papers (2021-06-23T18:12:58Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual
Embeddings Using the Unified Medical Language System Metathesaurus [73.86656026386038]
We introduce UmlsBERT, a contextual embedding model that integrates domain knowledge during the pre-training process.
By applying these two strategies, UmlsBERT can encode clinical domain knowledge into word embeddings and outperform existing domain-specific models.
arXiv Detail & Related papers (2020-10-20T15:56:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.