論文の概要: Controllable Complementarity: Subjective Preferences in Human-AI Collaboration
- arxiv url: http://arxiv.org/abs/2503.05455v1
- Date: Fri, 07 Mar 2025 14:27:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:20:39.345926
- Title: Controllable Complementarity: Subjective Preferences in Human-AI Collaboration
- Title(参考訳): 制御可能な相補性:人間-AI協調における主観的嗜好
- Authors: Chase McDonald, Cleotilde Gonzalez,
- Abstract要約: 強化学習アルゴリズムであるビヘイビア・シェーピング(BS)を用いて,AIパートナーとの共有タスクにおける制御可能性に対する人間の嗜好について検討する。
我々の発見は、タスクパフォーマンスと主観的人間の嗜好の両方を優先するAIの設計の必要性を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Research on human-AI collaboration often prioritizes objective performance. However, understanding human subjective preferences is essential to improving human-AI complementarity and human experiences. We investigate human preferences for controllability in a shared workspace task with AI partners using Behavior Shaping (BS), a reinforcement learning algorithm that allows humans explicit control over AI behavior. In one experiment, we validate the robustness of BS in producing effective AI policies relative to self-play policies, when controls are hidden. In another experiment, we enable human control, showing that participants perceive AI partners as more effective and enjoyable when they can directly dictate AI behavior. Our findings highlight the need to design AI that prioritizes both task performance and subjective human preferences. By aligning AI behavior with human preferences, we demonstrate how human-AI complementarity can extend beyond objective outcomes to include subjective preferences.
- Abstract(参考訳): 人間とAIのコラボレーションに関する研究は、しばしば客観的なパフォーマンスを優先する。
しかし、人間の主観的嗜好を理解することは、人間とAIの相補性と人間の経験を改善するために不可欠である。
我々は,AI行動の明示的な制御を可能にする強化学習アルゴリズムであるBehavior Shaping (BS) を用いて,AIパートナとの共有ワークスペースタスクにおける制御性に対する人間の嗜好について検討する。
ある実験では、制御が隠されたとき、自己再生ポリシーに対して効果的なAIポリシーを作成する際のBSの堅牢性を検証する。
別の実験では、参加者がAIの行動を直接指示できる場合に、AIパートナーをより効果的で楽しいものと認識していることを示す、人間のコントロールを可能にします。
我々の発見は、タスクパフォーマンスと主観的人間の嗜好の両方を優先するAIの設計の必要性を強調した。
人間の嗜好にAIの振る舞いを合わせることで、人間とAIの相補性が客観的な結果を超えて、主観的な嗜好を含むことができることを示す。
関連論文リスト
- Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - On the Utility of Accounting for Human Beliefs about AI Intention in Human-AI Collaboration [9.371527955300323]
我々は、人間がどのように解釈し、AIパートナーの意図を判断するかを捉える人間の信念のモデルを開発する。
私たちは、人間と対話するための戦略を考案する際に、人間の行動と人間の信念の両方を取り入れたAIエージェントを作成します。
論文 参考訳(メタデータ) (2024-06-10T06:39:37Z) - Towards Effective Human-AI Decision-Making: The Role of Human Learning
in Appropriate Reliance on AI Advice [3.595471754135419]
参加者100名を対象にした実験において,学習と適切な信頼の関係を示す。
本研究は,人間とAIの意思決定を効果的に設計するために,信頼度を分析し,意味を導き出すための基本的な概念を提供する。
論文 参考訳(メタデータ) (2023-10-03T14:51:53Z) - Applying HCAI in developing effective human-AI teaming: A perspective
from human-AI joint cognitive systems [10.746728034149989]
研究と応用は、AIシステムを開発するための新しいパラダイムとして、HAT(Human-AI Teaming)を使用している。
我々は,人間とAIの協調認知システム(HAIJCS)の概念的枠組みについて詳しく検討する。
本稿では,HATを表現・実装するためのヒューマンAI共同認知システム(HAIJCS)の概念的枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-08T06:26:38Z) - Learning to Influence Human Behavior with Offline Reinforcement Learning [70.7884839812069]
人間の準最適性を捉える必要があるような環境での影響に焦点を当てる。
人間によるオンライン実験は安全ではない可能性があり、環境の高忠実度シミュレータを作成することは現実的ではないことが多い。
オフライン強化学習は、観察された人間・人間の行動の要素を拡張し、組み合わせることで、人間に効果的に影響を及ぼすことができることを示す。
論文 参考訳(メタデータ) (2023-03-03T23:41:55Z) - Learning Complementary Policies for Human-AI Teams [22.13683008398939]
本稿では,効果的な行動選択のための新しい人間-AI協調のための枠組みを提案する。
私たちのソリューションは、人間とAIの相補性を利用して意思決定報酬を最大化することを目的としています。
論文 参考訳(メタデータ) (2023-02-06T17:22:18Z) - PECAN: Leveraging Policy Ensemble for Context-Aware Zero-Shot Human-AI
Coordination [52.991211077362586]
本研究では,集団におけるパートナーの多様性を高めるための政策アンサンブル手法を提案する。
そこで我々は,egoエージェントがパートナーの潜在的ポリシープリミティブを分析し,識別するためのコンテキスト認識手法を開発した。
このようにして、エゴエージェントは多様なパートナーとの共同作業において、より普遍的な協調行動を学ぶことができる。
論文 参考訳(メタデータ) (2023-01-16T12:14:58Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
我々は,カリキュラム強化学習結果を,人的意思決定プロセスから学ぶことで,難しすぎず,難しすぎるような望ましいパフォーマンスレベルに導く。
本システムは非常に並列化可能であり,大規模強化学習アプリケーションの訓練が可能となる。
強化学習性能は、人間の所望の難易度と同期してうまく調整できることが示される。
論文 参考訳(メタデータ) (2022-08-04T23:53:51Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。