論文の概要: Leveraging Approximate Caching for Faster Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2503.05530v1
- Date: Fri, 07 Mar 2025 15:54:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:19:55.712350
- Title: Leveraging Approximate Caching for Faster Retrieval-Augmented Generation
- Title(参考訳): 高速検索向上のための近似キャッシングの活用
- Authors: Shai Bergman, Zhang Ji, Anne-Marie Kermarrec, Diana Petrescu, Rafael Pires, Mathis Randl, Martijn de Vos,
- Abstract要約: Retrieval-augmented Generation (RAG)は、外部知識を統合することにより、大規模言語モデル(LLM)回答の信頼性を高める。
RAGは、大規模なベクトルデータベースから関連ドキュメントを探すのに計算コストがかかるため、エンドツーエンドの推論時間を増加させる。
本稿では,ユーザクエリの類似性を活用してRAGワークフローを最適化する,近似キー値キャッシュであるProximityを紹介する。
- 参考スコア(独自算出の注目度): 1.3450852784287828
- License:
- Abstract: Retrieval-augmented generation (RAG) enhances the reliability of large language model (LLM) answers by integrating external knowledge. However, RAG increases the end-to-end inference time since looking for relevant documents from large vector databases is computationally expensive. To address this, we introduce Proximity, an approximate key-value cache that optimizes the RAG workflow by leveraging similarities in user queries. Instead of treating each query independently, Proximity reuses previously retrieved documents when similar queries appear, reducing reliance on expensive vector database lookups. We evaluate Proximity on the MMLU and MedRAG benchmarks, demonstrating that it significantly improves retrieval efficiency while maintaining response accuracy. Proximity reduces retrieval latency by up to 59% while maintaining accuracy and lowers the computational burden on the vector database. We also experiment with different similarity thresholds and quantify the trade-off between speed and recall. Our work shows that approximate caching is a viable and effective strategy for optimizing RAG-based systems.
- Abstract(参考訳): Retrieval-augmented Generation (RAG)は、外部知識を統合することにより、大規模言語モデル(LLM)回答の信頼性を高める。
しかし,大規模ベクトルデータベースからの関連文書の検索は計算コストがかかるため,RAGはエンドツーエンドの推論時間を増加させる。
この問題を解決するために,ユーザクエリの類似性を活用してRAGワークフローを最適化する,近似キー値キャッシュであるProximityを導入する。
Proximityは、それぞれのクエリを独立して扱う代わりに、類似したクエリが現れたときに検索したドキュメントを再利用することで、高価なベクトルデータベースのルックアップへの依存を減らす。
MMLU と MedRAG のベンチマークで近似性を評価し,応答精度を保ちながら検索効率を大幅に向上することを示した。
Proximityは、精度を維持しながら、検索遅延を最大59%削減し、ベクトルデータベースの計算負担を低減します。
また、異なる類似度閾値を実験し、速度とリコールの間のトレードオフを定量化します。
我々の研究は、RAGベースのシステムを最適化する上で、近似キャッシングが有効かつ効果的な戦略であることを示している。
関連論文リスト
- Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル幻覚を緩和するための強力なアプローチとして登場した。
既存のRAGフレームワークは、しばしば無差別に検索を適用し、非効率な再検索につながる。
本稿では,精度・コストのトレードオフを動的に調整できる新しいユーザ制御可能なRAGフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:56:20Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - Toward Optimal Search and Retrieval for RAG [39.69494982983534]
Retrieval-augmented Generation (RAG)は、Large Language Models (LLM)に関連するメモリ関連の課題に対処するための有望な方法である。
ここでは、質問回答(QA)などの共通タスクに対して、レトリバーをRAGパイプラインに最適化する方法を理解することを目的としている。
論文 参考訳(メタデータ) (2024-11-11T22:06:51Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Optimizing Query Generation for Enhanced Document Retrieval in RAG [53.10369742545479]
大規模言語モデル(LLM)は様々な言語タスクに優れるが、しばしば誤った情報を生成する。
Retrieval-Augmented Generation (RAG) は、正確な応答に文書検索を使用することによってこれを緩和することを目的としている。
論文 参考訳(メタデータ) (2024-07-17T05:50:32Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
大きな言語モデル(LLM)のメモリを拡張する一般的な方法は、検索拡張生成(RAG)である。
本稿では,検索結果の集合に対するクエリに関連する総情報の確率的尺度である,関連情報ゲインに基づく新しい単純な最適化指標を提案する。
RAGシステムの検索コンポーネントのドロップイン置換として使用すると、質問応答タスクにおける最先端のパフォーマンスが得られる。
論文 参考訳(メタデータ) (2024-07-16T18:09:21Z) - RAGCache: Efficient Knowledge Caching for Retrieval-Augmented Generation [11.321659218769598]
Retrieval-Augmented Generation (RAG)は、様々な自然言語処理タスクにおいて大幅に改善されている。
RAGCacheは、検索した知識の中間状態を知識ツリーに整理し、それらをGPUとホストメモリ階層にキャッシュする。
RAGCacheは、最初のトークン(TTTF)までの時間を最大4倍に削減し、スループットを最大2.1倍改善する。
論文 参考訳(メタデータ) (2024-04-18T18:32:30Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
論文 参考訳(メタデータ) (2024-01-29T04:36:39Z) - ReFIT: Relevance Feedback from a Reranker during Inference [109.33278799999582]
Retrieve-and-Rerankは、ニューラル情報検索の一般的なフレームワークである。
本稿では,リランカを利用してリコールを改善する手法を提案する。
論文 参考訳(メタデータ) (2023-05-19T15:30:33Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
我々は、近似キーキャッシングと名付けた新しいキャッシングパラダイムを提案する。
近似キャッシュはDL推論の負荷を軽減し、システムのスループットを向上するが、近似誤差を導入する。
我々は古典的なLRUと理想的なキャッシュのキャッシュシステム性能を解析的にモデル化し、期待される性能のトレース駆動評価を行い、提案手法の利点を最先端の類似キャッシュと比較した。
論文 参考訳(メタデータ) (2021-12-13T13:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。