論文の概要: Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control
- arxiv url: http://arxiv.org/abs/2502.12145v1
- Date: Mon, 17 Feb 2025 18:56:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:36.778660
- Title: Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control
- Title(参考訳): 高速か改善か? フレキシブルユーザ制御による検索拡張世代における精度とコストのバランス
- Authors: Jinyan Su, Jennifer Healey, Preslav Nakov, Claire Cardie,
- Abstract要約: Retrieval-Augmented Generation (RAG) は、大規模言語モデル幻覚を緩和するための強力なアプローチとして登場した。
既存のRAGフレームワークは、しばしば無差別に検索を適用し、非効率な再検索につながる。
本稿では,精度・コストのトレードオフを動的に調整できる新しいユーザ制御可能なRAGフレームワークを提案する。
- 参考スコア(独自算出の注目度): 52.405085773954596
- License:
- Abstract: Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model (LLM) hallucinations by incorporating external knowledge retrieval. However, existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving when unnecessary or failing to retrieve iteratively when required for complex reasoning. Recent adaptive retrieval strategies, though adaptively navigates these retrieval strategies, predict only based on query complexity and lacks user-driven flexibility, making them infeasible for diverse user application needs. In this paper, we introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off. Our approach leverages two classifiers: one trained to prioritize accuracy and another to prioritize retrieval efficiency. Via an interpretable control parameter $\alpha$, users can seamlessly navigate between minimal-cost retrieval and high-accuracy retrieval based on their specific requirements. We empirically demonstrate that our approach effectively balances accuracy, retrieval cost, and user controllability, making it a practical and adaptable solution for real-world applications.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、外部知識検索を取り入れた大規模言語モデル(LLM)幻覚を緩和するための強力なアプローチとして登場した。
しかしながら、既存のRAGフレームワークは検索を無差別に適用し、複雑な推論に必要な場合、不要または反復的に検索できない場合、非効率な再検索につながる。
最近の適応型検索戦略は、これらの検索戦略を適応的にナビゲートするが、クエリの複雑さのみに基づいて予測し、ユーザ主導の柔軟性に欠けており、多様なユーザアプリケーションのニーズに対して実現不可能である。
本稿では,精度・コストのトレードオフを動的に調整できる新しいユーザ制御可能なRAGフレームワークを提案する。
提案手法では,精度を優先するために訓練された2つの分類器と,検索効率を優先するために訓練された2つの分類器を利用する。
解釈可能な制御パラメータ$\alpha$を使用すると、ユーザは、最小限のコストの検索と、その特定の要求に基づいて高精度の検索をシームレスにナビゲートできる。
我々は,本手法が精度,検索コスト,ユーザ制御性を効果的にバランスし,現実のアプリケーションに対して実用的で適応可能なソリューションであることを実証的に実証した。
関連論文リスト
- Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting [107.4034346788744]
既存の車両軌道予測モデルは、一般化可能性、予測の不確実性、複雑な相互作用を扱う。
本研究では,(1)自己拡張(SD)とマスドレコンストラクション(MR)による二重レベル表現学習,グローバルコンテキストと細部の詳細の収集,(2)レジスタベースのクエリと事前学習の強化,クラスタリングと抑圧の必要性の排除,(3)微調整中の適応型プロンプトチューニング,メインアーキテクチャの凍結,および少数のプロンプトの最適化といった,新たなトラジェクタ予測フレームワークであるPerceiverを提案する。
論文 参考訳(メタデータ) (2025-01-08T20:11:09Z) - The Efficiency vs. Accuracy Trade-off: Optimizing RAG-Enhanced LLM Recommender Systems Using Multi-Head Early Exit [46.37267466656765]
本稿では,Retrieval-Augmented Generation(RAG)と革新的なマルチヘッドアーリーエグジットアーキテクチャを組み合わせた最適化フレームワークを提案する。
我々の実験は、信頼性の高いレコメンデーション配信に必要な精度を犠牲にすることなく、このアーキテクチャがいかに効果的に時間を削減するかを実証している。
論文 参考訳(メタデータ) (2025-01-04T03:26:46Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity [30.346398341996476]
本稿では,クエリの複雑性に基づいて最適な検索戦略を動的に選択する強化学習ベースのフレームワークを提案する。
提案手法は,検索コストを低減しつつ,複数のシングルホップおよびマルチホップデータセット上でのアート結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2024-12-02T14:55:02Z) - Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models [26.353428245346166]
Extract-Refine-Retrieve-Read (ERRR)フレームワークは、Retrieval-Augmented Generation (RAG)システムにおける事前検索情報ギャップを埋めるように設計されている。
RAGで使用される従来のクエリ最適化手法とは異なり、ERRRフレームワークはLarge Language Models (LLM) から知識を抽出することから始まる。
論文 参考訳(メタデータ) (2024-11-12T14:12:45Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - CtrlA: Adaptive Retrieval-Augmented Generation via Inherent Control [26.21425058462886]
大規模言語モデル(LLM)の幻覚を、検索された外部知識で緩和するための有望な解決策として、検索拡張世代(RAG)が出現している。
本稿では,適応的なRAGを表現的視点から解決し,固有な制御ベースフレームワークであるnameを開発するための最初の試みについて述べる。
実験により、名前は様々なタスクにおいて既存の適応RAG法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-29T03:17:16Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。