Exploring Tensor Network Algorithms as a Quantum-Inspired Method for Quantum Extreme Learning Machine
- URL: http://arxiv.org/abs/2503.05535v2
- Date: Thu, 10 Apr 2025 13:52:33 GMT
- Title: Exploring Tensor Network Algorithms as a Quantum-Inspired Method for Quantum Extreme Learning Machine
- Authors: Payal D. Solanki, Anh Pham,
- Abstract summary: Quantum Extreme Learning Machine (QELM) has emerged as a promising hybrid quantum machine learning (QML) method.<n>We explore how quantum-inspired techniques like tensor networks (TNs) can be used for the QELM algorithm.<n>This study also underscores the potential of tensor networks as quantum-inspired algorithms to enhance the capability of quantum machine learning algorithms to study datasets with large numbers of features.
- Score: 0.26013878609420266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Extreme Learning Machine (QELM) has emerged as a promising hybrid quantum machine learning (QML) method that leverages the complex dynamics of quantum systems and classical machine learning models. Motivated by the development of this new QML method, we explore how quantum-inspired techniques like tensor networks (TNs), specifically the Time Dependent Variational Principle (TDVP) with Matrix Product State (MPS), can be used for the QELM algorithm. To demonstrate the utility of our quantum-inspired method, we performed numerical experiments on the MNIST dataset and compared the performance of our quantum-inspired QELM with different classical machine learning (ML) methods. The results reveal that high-quality embeddings can be generated by performing the time-evolution of MPS system consisting of one-dimensional chain of Rydberg atoms. This quantum-inspired method is highly scalable, enabling the simulation of 100 qubits with a low classical computing overhead. Finally, this study also underscores the potential of tensor networks as quantum-inspired algorithms to enhance the capability of quantum machine learning algorithms to study datasets with large numbers of features.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
We introduce the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with machine learning algorithms.
QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model.
arXiv Detail & Related papers (2024-05-18T14:35:57Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum-Assisted Simulation: A Framework for Developing Machine Learning Models in Quantum Computing [0.0]
We investigate the history of quantum computing, examine existing QML algorithms, and present a simplified procedure for setting up simulations of QML algorithms.
We conduct simulations on a dataset using both traditional machine learning and quantum machine learning approaches.
arXiv Detail & Related papers (2023-11-17T07:33:42Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine learning framework [48.491303218786044]
TeD-Q is an open-source software framework for quantum machine learning.<n>It seamlessly integrates classical machine learning libraries with quantum simulators.<n>It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Machine Learning For Classical Data [0.0]
We study the intersection of quantum computing and supervised machine learning algorithms.
In particular, we investigate what extent quantum computers can be used to accelerate supervised machine learning algorithms.
arXiv Detail & Related papers (2021-05-08T12:11:44Z) - TensorFlow Quantum: A Software Framework for Quantum Machine Learning [36.75544801185366]
We introduce Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data.
We demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning.
arXiv Detail & Related papers (2020-03-06T01:31:43Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.