Less Quantum, More Advantage: An End-to-End Quantum Algorithm for the Jones Polynomial
- URL: http://arxiv.org/abs/2503.05625v1
- Date: Fri, 07 Mar 2025 17:50:48 GMT
- Title: Less Quantum, More Advantage: An End-to-End Quantum Algorithm for the Jones Polynomial
- Authors: Tuomas Laakkonen, Enrico Rinaldi, Chris N. Self, Eli Chertkov, Matthew DeCross, David Hayes, Brian Neyenhuis, Marcello Benedetti, Konstantinos Meichanetzidis,
- Abstract summary: We present an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in theory using a noisy digital quantum computer.<n>We implement and benchmark the state-of-the-art tensor-network-based classical algorithms for computing the Jonesvariant.<n>The practical tools provided in this work allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.
- Score: 0.9674145073701153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in knot theory using a noisy digital quantum computer, namely computing the value of the Jones polynomial at the fifth root of unity within additive error for any input link, i.e. a closed braid. This problem is DQC1-complete for Markov-closed braids and BQP-complete for Plat-closed braids, and we accommodate both versions of the problem. Even though it is widely believed that DQC1 is strictly contained in BQP, and so is 'less quantum', the resource requirements of classical algorithms for the DQC1 version are at least as high as for the BQP version, and so we potentially gain 'more advantage' by focusing on Markov-closed braids in our exposition. We demonstrate our quantum algorithm on Quantinuum's H2-2 quantum computer and show the effect of problem-tailored error-mitigation techniques. Further, leveraging that the Jones polynomial is a link invariant, we construct an efficiently verifiable benchmark to characterise the effect of noise present in a given quantum processor. In parallel, we implement and benchmark the state-of-the-art tensor-network-based classical algorithms for computing the Jones polynomial. The practical tools provided in this work allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.
Related papers
- Optimization by Decoded Quantum Interferometry [43.55132675053983]
We introduce a quantum algorithm called Decoded Quantum Interferometry (DQI)
For approximating optimal fits to data over finite fields, DQI achieves a better approximation ratio than any time known to us.
We demonstrate this by benchmarking on an instance with over 30,000 variables.
arXiv Detail & Related papers (2024-08-15T17:47:42Z) - Discretized Quantum Exhaustive Search for Variational Quantum Algorithms [0.0]
Currently available quantum devices have only a limited amount of qubits and a high level of noise, limiting the size of problems that can be solved accurately with those devices.
We propose a novel method that can improve variational quantum algorithms -- discretized quantum exhaustive search''
arXiv Detail & Related papers (2024-07-24T22:06:05Z) - A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2024-04-26T21:29:42Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Limitations of Noisy Quantum Devices in Computational and Entangling
Power [5.178527492542246]
We show that noisy quantum devices with a circuit depth of more than $O(log n)$ provide no advantages in any quantum algorithms.
We also study the maximal entanglement that noisy quantum devices can produce under one- and two-dimensional qubit connections.
arXiv Detail & Related papers (2023-06-05T12:29:55Z) - Making the cut: two methods for breaking down a quantum algorithm [0.0]
It remains a major challenge to find quantum algorithms that may reach computational advantage in the present era of noisy, small-scale quantum hardware.
We identify and characterize two methods of breaking down'' quantum algorithms into rounds of lower (query) depth.
We show that for the first problem parallelization offers the best performance, while for the second is the better choice.
arXiv Detail & Related papers (2023-05-17T18:00:06Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
Quantum algorithms for topological data analysis seem to provide an exponential advantage over the best classical approach.
We show that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers.
We argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices.
arXiv Detail & Related papers (2022-09-28T17:53:25Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Fast-Forwarding with NISQ Processors without Feedback Loop [0.0]
We present the Classical Quantum Fast Forwarding (CQFF) as an alternative diagonalisation based algorithm for quantum simulation.
CQFF removes the need for a classical-quantum feedback loop and controlled multi-qubit unitaries.
Our work provides a $104$ improvement over the previous record.
arXiv Detail & Related papers (2021-04-05T14:29:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.