論文の概要: Modeling Behavior Change for Multi-model At-Risk Students Early Prediction (extended version)
- arxiv url: http://arxiv.org/abs/2503.05734v1
- Date: Wed, 19 Feb 2025 11:16:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 09:47:40.874118
- Title: Modeling Behavior Change for Multi-model At-Risk Students Early Prediction (extended version)
- Title(参考訳): 多モデルat-Risk学生の早期予測における行動変化のモデル化(拡張版)
- Authors: Jiabei Cheng, Zhen-Qun Yang, Jiannong Cao, Yu Yang, Kai Cheung Franky Poon, Daniel Lai,
- Abstract要約: 現在のモデルは、単純かつ離散的な行動パターンを通じて、一貫してパフォーマンスの悪い学生を識別する。
我々は,中学校の教師の発言データと数値グレードデータを利用した,革新的な予測モデルであるMultimodal-ChangePoint Detection (MCPD)を開発した。
本モデルでは,ベースラインアルゴリズムの平均性能を約5~10%向上させるとともに,70~75%の精度範囲を達成している。
- 参考スコア(独自算出の注目度): 10.413751893289056
- License:
- Abstract: In the educational domain, identifying students at risk of dropping out is essential for allowing educators to intervene effectively, improving both academic outcomes and overall student well-being. Data in educational settings often originate from diverse sources, such as assignments, grades, and attendance records. However, most existing research relies on online learning data and just extracting the quantitative features. While quantification eases processing, it also leads to a significant loss of original information. Moreover, current models primarily identify students with consistently poor performance through simple and discrete behavioural patterns, failing to capture the complex continuity and non-linear changes in student behaviour. We have developed an innovative prediction model, Multimodal- ChangePoint Detection (MCPD), utilizing the textual teacher remark data and numerical grade data from middle schools. Our model achieves a highly integrated and intelligent analysis by using independent encoders to process two data types, fusing the encoded feature. The model further refines its analysis by leveraging a changepoint detection module to pinpoint crucial behavioral changes, which are integrated as dynamic weights through a simple attention mechanism. Experimental validations indicate that our model achieves an accuracy range of 70- 75%, with an average outperforming baseline algorithms by approximately 5-10%. Additionally, our algorithm demonstrates a certain degree of transferability, maintaining high accuracy when adjusted and retrained with different definitions of at-risk, proving its broad applicability.
- Abstract(参考訳): 教育分野では、学生の退学リスクを識別することは、教育者が効果的に介入し、学業成績と学生全体の幸福感の両方を改善するために不可欠である。
教育現場のデータは、割り当て、成績、出席記録などの様々な情報源から生まれることが多い。
しかし、既存の研究のほとんどはオンライン学習データに依存しており、量的特徴を抽出しているだけである。
量子化は処理を容易にするが、元の情報が著しく失われる。
さらに、現在のモデルは、単純かつ離散的な行動パターンを通じて、一貫してパフォーマンスの悪い学生を識別し、複雑な連続性と非線形な生徒の行動の変化を捉えない。
我々は,中学校の教師の発言データと数値グレードデータを利用した,革新的な予測モデルであるMultimodal-ChangePoint Detection (MCPD)を開発した。
本モデルでは,独立型エンコーダを用いて2種類のデータ型を処理し,符号化された特徴を融合することにより,高度に統合されたインテリジェントな解析を実現する。
このモデルは、変更点検出モジュールを利用して重要な行動変化をピンポイントし、簡単な注意機構を通じて動的重みとして統合することで分析をさらに洗練する。
実験により,提案手法の精度は70~75%であり,ベースラインアルゴリズムの精度は平均5~10%向上した。
さらに,本アルゴリズムは,一定程度の転送可能性を示し,調整時の精度を高く保ち,リスクの異なる定義で再学習し,適用性を示す。
関連論文リスト
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
モデルの一般化動作は,事前記憶列車の精度と呼ばれるトレーニング指標によって効果的に特徴づけられることがわかった。
モデルの学習行動と一般化を結びつけることで、トレーニング戦略に目標とする改善を導くことができる。
論文 参考訳(メタデータ) (2024-11-12T09:52:40Z) - Unlearning Information Bottleneck: Machine Unlearning of Systematic Patterns and Biases [6.936871609178494]
本稿では,機械学習のプロセスを強化するための新しい情報理論フレームワークであるUnlearning Information Bottleneck(UIB)を紹介する。
変分上界を提案することにより,データ分布の変化を安価な計算コストと統合する動的事前計算により,モデルパラメータを再検討する。
さまざまなデータセット,モデル,未学習手法を対象とした実験により,本手法は学習後のモデルの性能を維持しながら,体系的なパターンやバイアスを効果的に除去することを示した。
論文 参考訳(メタデータ) (2024-05-22T21:54:05Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
大規模で事前訓練されたモデルは、問題を解決するのに必要なタスク固有のデータの量を劇的に削減するが、多くの場合、ドメイン固有のニュアンスを箱から取り出すのに失敗する。
本稿では,NLPとマルチモーダル学習の最近の進歩を活用して,検索エンジン検索による事前学習モデルを強化する方法について述べる。
論文 参考訳(メタデータ) (2023-11-29T05:33:28Z) - Monitoring Machine Learning Models: Online Detection of Relevant
Deviations [0.0]
機械学習モデルは、データ分散やその他の要因の変化によって、時間の経過とともに劣化する可能性がある。
本稿では,関連する変化を検出するための逐次モニタリング手法を提案する。
本研究は, 微ゆらぎと有意義な劣化を区別する実用的な解決法である。
論文 参考訳(メタデータ) (2023-09-26T18:46:37Z) - MoMA: Momentum Contrastive Learning with Multi-head Attention-based Knowledge Distillation for Histopathology Image Analysis [4.5677296928097055]
計算病理学における特定のタスクに関して、品質データの欠如は一般的な問題である。
そこで本研究では,既存のモデルを用いて新たなターゲットモデルを学習する知識蒸留手法を提案する。
本研究では,教師モデルから学習対象モデルを学習するために,学習者・教師の枠組みを用いる。
論文 参考訳(メタデータ) (2023-08-31T08:54:59Z) - Predicting student performance using sequence classification with
time-based windows [1.5836913530330787]
本研究では,学生の行動データから得られた逐次的パターンに基づいて,正確な予測モデルを構築することができることを示す。
本稿では,行動データの時間的側面を把握し,モデルの性能予測に与える影響を解析する手法を提案する。
改良されたシーケンス分類手法は,高レベルの精度で生徒のパフォーマンスを予測でき,コース固有のモデルでは90%に達する。
論文 参考訳(メタデータ) (2022-08-16T13:46:39Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Learning to Reweight with Deep Interactions [104.68509759134878]
本稿では,教師モデルに内部状態を提供する改良型データ再重み付けアルゴリズムを提案する。
クリーン/ノイズラベルとニューラルマシン翻訳を用いた画像分類実験は、我々のアルゴリズムが従来の手法よりも大幅に改善されていることを実証的に実証した。
論文 参考訳(メタデータ) (2020-07-09T09:06:31Z) - An Efficient Method of Training Small Models for Regression Problems
with Knowledge Distillation [1.433758865948252]
回帰問題に対する知識蒸留の新しい定式化を提案する。
まず,教師モデル予測を用いて,教師モデルを用いた学習サンプルの退学率を下げる新たな損失関数,教師の退学率の減少を提案する。
マルチタスクネットワークを考えることで、学生モデルの特徴抽出の訓練がより効果的になる。
論文 参考訳(メタデータ) (2020-02-28T08:46:12Z) - Precise Tradeoffs in Adversarial Training for Linear Regression [55.764306209771405]
本稿では,ガウス的特徴を伴う線形回帰の文脈における対人訓練の役割を,正確かつ包括的に理解する。
我々は,同時代のミニマックス対逆訓練手法によって達成された標準/ロバスト精度とそれに対応するトレードオフを正確に特徴づける。
逆行訓練アルゴリズムの理論は、様々な要因(トレーニングデータのサイズや品質、モデルの過度化など)がこれらの2つの競合するアキュラシー間のトレードオフにどのように影響するかを厳密に研究する上で役立ちます。
論文 参考訳(メタデータ) (2020-02-24T19:01:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。