The Lazy Student's Dream: ChatGPT Passing an Engineering Course on Its Own
- URL: http://arxiv.org/abs/2503.05760v2
- Date: Tue, 11 Mar 2025 14:04:58 GMT
- Title: The Lazy Student's Dream: ChatGPT Passing an Engineering Course on Its Own
- Authors: Gokul Puthumanaillam, Melkior Ornik,
- Abstract summary: This paper presents a comprehensive investigation into the capability of Large Language Models (LLMs) to successfully complete a control systems course.<n>We assess LLM performance using ChatGPT under a "minimal effort" protocol that simulates realistic student usage patterns.<n>Our analysis provides quantitative insights into AI's strengths and limitations in handling mathematical formulations, coding challenges, and theoretical concepts in control systems engineering.
- Score: 1.2891210250935148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive investigation into the capability of Large Language Models (LLMs) to successfully complete a semester-long undergraduate control systems course. Through evaluation of 115 course deliverables, we assess LLM performance using ChatGPT under a "minimal effort" protocol that simulates realistic student usage patterns. The investigation employs a rigorous testing methodology across multiple assessment formats, from auto-graded multiple choice questions to complex Python programming tasks and long-form analytical writing. Our analysis provides quantitative insights into AI's strengths and limitations in handling mathematical formulations, coding challenges, and theoretical concepts in control systems engineering. The LLM achieved a B-grade performance (82.24\%), approaching but not exceeding the class average (84.99\%), with strongest results in structured assignments and greatest limitations in open-ended projects. The findings inform discussions about course design adaptation in response to AI advancement, moving beyond simple prohibition towards thoughtful integration of these tools in engineering education. Additional materials including syllabus, examination papers, design projects, and example responses can be found at the project website: https://gradegpt.github.io.
Related papers
- Towards Efficient Educational Chatbots: Benchmarking RAG Frameworks [2.362412515574206]
Large Language Models (LLMs) have proven immensely beneficial in education by capturing vast amounts of literature-based information.
We propose a generative AI-powered GATE question-answering framework that leverages LLMs to explain GATE solutions and support students in their exam preparation.
arXiv Detail & Related papers (2025-03-02T08:11:07Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - An efficient approach to represent enterprise web application structure using Large Language Model in the service of Intelligent Quality Engineering [0.0]
This paper presents a novel approach to represent enterprise web application structures using Large Language Models (LLMs)<n>We introduce a hierarchical representation methodology that optimize the few-shot learning capabilities of LLMs.<n>Our methodology addresses existing challenges around usage of Generative AI techniques in automated software testing.
arXiv Detail & Related papers (2025-01-12T15:10:57Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Analyzing LLM Usage in an Advanced Computing Class in India [4.580708389528142]
This study examines the use of large language models (LLMs) by undergraduate and graduate students for programming assignments in advanced computing classes.
We conducted a comprehensive analysis involving 411 students from a Distributed Systems class at an Indian university.
arXiv Detail & Related papers (2024-04-06T12:06:56Z) - A Case Study on Test Case Construction with Large Language Models:
Unveiling Practical Insights and Challenges [2.7029792239733914]
This paper examines the application of Large Language Models in the construction of test cases within the context of software engineering.
Through a blend of qualitative and quantitative analyses, this study assesses the impact of LLMs on test case comprehensiveness, accuracy, and efficiency.
arXiv Detail & Related papers (2023-12-19T20:59:02Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
We make a systematic review of the literature, including the general methodology of supervised fine-tuning (SFT)<n>We also review the potential pitfalls of SFT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies.
arXiv Detail & Related papers (2023-08-21T15:35:16Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
Large Language Models (LLMs) have made significant progress in utilizing tools, but their ability is limited by API availability.
We propose CREATOR, a novel framework that enables LLMs to create their own tools using documentation and code realization.
We evaluate CREATOR on MATH and TabMWP benchmarks, respectively consisting of challenging math competition problems.
arXiv Detail & Related papers (2023-05-23T17:51:52Z) - Can Generative Pre-trained Transformers (GPT) Pass Assessments in Higher
Education Programming Courses? [6.2122699483618]
We evaluated the capability of generative pre-trained transformers (GPT) to pass assessments in Python programming courses at the postsecondary level.
We studied if and how successfully GPT models leverage feedback provided by an auto-grader.
It is clear that a straightforward application of these easily accessible models could enable a learner to obtain a non-trivial portion of the overall available score.
arXiv Detail & Related papers (2023-03-16T13:58:45Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
Various automatic curriculum learning (ACL) methods have been proposed to improve the sample efficiency and final performance of deep reinforcement learning (DRL)
In this paper, we propose a unified automatic curriculum learning framework to create multi-objective but coherent curricula.
In addition to existing hand-designed curricula paradigms, we further design a flexible memory mechanism to learn an abstract curriculum.
arXiv Detail & Related papers (2021-10-06T19:30:25Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.