論文の概要: Effect of Gender Fair Job Description on Generative AI Images
- arxiv url: http://arxiv.org/abs/2503.05769v1
- Date: Tue, 25 Feb 2025 10:21:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 09:17:35.240536
- Title: Effect of Gender Fair Job Description on Generative AI Images
- Title(参考訳): ジェンダーフェアジョブ記述が生成AI画像に及ぼす影響
- Authors: Finn Böckling, Jan Marquenie, Ingo Siegert,
- Abstract要約: 本研究は,OpenAI DALL-E 3 & Black Forest FLUX.1が生成したSTEM占領画像におけるジェンダー表現を,3つの言語形式で150のプロンプトを用いて分析した。
結果,全形態に有意な男性偏見がみられ,ドイツ式は偏見が低いが,STEM群では男性を過度に表し,社会職業群では混在した結果がみられた。
- 参考スコア(独自算出の注目度): 2.5234156040689237
- License:
- Abstract: STEM fields are traditionally male-dominated, with gender biases shaping perceptions of job accessibility. This study analyzed gender representation in STEM occupation images generated by OpenAI DALL-E 3 \& Black Forest FLUX.1 using 150 prompts in three linguistic forms: German generic masculine, German pair form, and English. As control, 20 pictures of social occupations were generated as well. Results revealed significant male bias across all forms, with the German pair form showing reduced bias but still overrepresenting men for the STEM-Group and mixed results for the Group of Social Occupations. These findings highlight generative AI's role in reinforcing societal biases, emphasizing the need for further discussion on diversity (in AI). Further aspects analyzed are age-distribution and ethnic diversity.
- Abstract(参考訳): STEM分野は伝統的に男性に支配され、ジェンダーバイアスは仕事のアクセシビリティの知覚を形成する。
本研究では,OpenAI DALL-E 3 \& Black Forest FLUX.1が生成したSTEM占領画像におけるジェンダー表現を,ドイツ系男性,ドイツ系男性,英語の3つの言語形式で150のプロンプトを用いて分析した。
また、社会職の絵も20枚も制作された。
結果,全形態に有意な男性偏見がみられ,ドイツ式は偏見が低いが,STEM群では男性を過度に表し,社会職業群では混在した結果がみられた。
これらの知見は、(AIにおける)多様性に関するさらなる議論の必要性を強調し、社会的バイアスを強化するために、生成的AIが果たす役割を強調している。
さらに分析された側面は、年齢分布と民族多様性である。
関連論文リスト
- Evaluating Gender Bias in Large Language Models [0.8636148452563583]
本研究では,大規模言語モデル (LLMs) が職業文脈における代名詞選択における性別バイアスの程度について検討した。
対象とする職業は、男性に有意な存在感を持つものから女性に有意な集中力を持つものまで幅広い。
その結果, モデルの代名詞選択と, 労働力データに存在する性別分布との間には, 正の相関関係が認められた。
論文 参考訳(メタデータ) (2024-11-14T22:23:13Z) - Generalizing Fairness to Generative Language Models via Reformulation of Non-discrimination Criteria [4.738231680800414]
本稿では、生成言語モデルにおけるジェンダーバイアスの存在を解明し、定量化する方法について研究する。
我々は、独立性、分離性、充足性という3つのよく知られた非識別基準のジェネレーティブAIアナログを導出する。
本研究は,このような対話型言語モデルにおける職業性バイアスの存在に対処するものである。
論文 参考訳(メタデータ) (2024-03-13T14:19:08Z) - The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
本稿では,Paired Stereotype Test (PST) フレームワークを提案する。
PSTクエリT2Iモデルは、男性ステレオタイプと女性ステレオタイプに割り当てられた2つの個人を描写する。
PSTを用いて、ジェンダーバイアスの2つの側面、つまり、ジェンダーの職業におけるよく知られたバイアスと、組織力におけるバイアスという新しい側面を評価する。
論文 参考訳(メタデータ) (2024-02-16T21:32:27Z) - Unveiling Gender Bias in Terms of Profession Across LLMs: Analyzing and
Addressing Sociological Implications [0.0]
この研究は、AI言語モデルにおけるジェンダーバイアスに関する既存の研究を調査し、現在の知識のギャップを特定する。
この結果は,大規模言語モデルのアウトプットに存在する,ジェンダー付き単語関連,言語使用,偏見付き物語に光を当てた。
本稿では,アルゴリズムアプローチやデータ拡張手法など,LSMにおける性別バイアスを低減するための戦略を提案する。
論文 参考訳(メタデータ) (2023-07-18T11:38:45Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Smiling Women Pitching Down: Auditing Representational and
Presentational Gender Biases in Image Generative AI [0.6990493129893111]
153職種にまたがる15,300 DALL-E 2画像における2つの職業性バイアスの頻度について検討した。
DALL-E 2は、女性支配領域において女性を過剰に表現し、女性支配領域において女性を過剰に表現する。
本研究は,DALL-E 2における表現バイアスと提示バイアスを,Google Imagesと比較して明らかにした。
論文 参考訳(メタデータ) (2023-05-17T20:59:10Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
本稿では,テキスト・ツー・イメージ(TTI)システムにおける社会的バイアスを探索する新しい手法を提案する。
我々のアプローチは、プロンプト内の性別や民族のマーカーを列挙して生成された画像の変動を特徴づけることに依存している。
我々はこの手法を利用して3つのTTIシステムによって生成された画像を分析し、そのアウトプットが米国の労働人口層と相関しているのに対して、彼らは常に異なる範囲において、限界化されたアイデンティティを低く表現している。
論文 参考訳(メタデータ) (2023-03-20T19:32:49Z) - Auditing Gender Presentation Differences in Text-to-Image Models [54.16959473093973]
我々は、テキスト・ツー・イメージ・モデルにおいて、ジェンダーがどのように異なる形で提示されるかを研究する。
入力テキスト中の性指標を探索することにより、プレゼンテーション中心属性の周波数差を定量化する。
このような違いを推定する自動手法を提案する。
論文 参考訳(メタデータ) (2023-02-07T18:52:22Z) - How well can Text-to-Image Generative Models understand Ethical Natural
Language Interventions? [67.97752431429865]
倫理的介入を加える際の画像の多様性への影響について検討した。
予備研究は、モデル予測の大きな変化が「性別の無視」のような特定のフレーズによって引き起こされることを示している。
論文 参考訳(メタデータ) (2022-10-27T07:32:39Z) - How True is GPT-2? An Empirical Analysis of Intersectional Occupational
Biases [50.591267188664666]
下流のアプリケーションは、自然言語モデルに含まれるバイアスを継承するリスクがある。
一般的な生成言語モデルであるGPT-2の作業バイアスを分析した。
特定の仕事について、GPT-2は米国におけるジェンダーと民族の社会的偏見を反映しており、場合によってはジェンダー・パリティの傾向を反映している。
論文 参考訳(メタデータ) (2021-02-08T11:10:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。