論文の概要: FedMentalCare: Towards Privacy-Preserving Fine-Tuned LLMs to Analyze Mental Health Status Using Federated Learning Framework
- arxiv url: http://arxiv.org/abs/2503.05786v1
- Date: Thu, 27 Feb 2025 07:04:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 08:47:04.111500
- Title: FedMentalCare: Towards Privacy-Preserving Fine-Tuned LLMs to Analyze Mental Health Status Using Federated Learning Framework
- Title(参考訳): FedMentalCare:フェデレートラーニングフレームワークを用いたメンタルヘルス状態分析のためのプライバシ保護型微調整LDMの実現
- Authors: S M Sarwar,
- Abstract要約: FedCareは、メンタルヘルスケアアプリケーションに大規模言語モデル(LLM)をデプロイするための、プライバシ保護フレームワークである。
われわれのフレームワークは、現実のメンタルヘルスシナリオにLSMをデプロイするためのスケーラブルでプライバシに配慮したアプローチを実証している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With the increasing prevalence of mental health conditions worldwide, AI-powered chatbots and conversational agents have emerged as accessible tools to support mental health. However, deploying Large Language Models (LLMs) in mental healthcare applications raises significant privacy concerns, especially regarding regulations like HIPAA and GDPR. In this work, we propose FedMentalCare, a privacy-preserving framework that leverages Federated Learning (FL) combined with Low-Rank Adaptation (LoRA) to fine-tune LLMs for mental health analysis. We investigate the performance impact of varying client data volumes and model architectures (e.g., MobileBERT and MiniLM) in FL environments. Our framework demonstrates a scalable, privacy-aware approach for deploying LLMs in real-world mental healthcare scenarios, addressing data security and computational efficiency challenges.
- Abstract(参考訳): 世界中でメンタルヘルスが流行するにつれて、AIを利用したチャットボットや会話エージェントがメンタルヘルスを支援するツールとして登場してきた。
しかしながら、メンタルヘルスケアアプリケーションにLLM(Large Language Models)をデプロイすることは、特にHIPAAやGDPRのような規制に関して、重要なプライバシー上の懸念を引き起こす。
本稿では,フェデレートラーニング(FL)とローランド適応(LoRA)を組み合わせたプライバシー保護フレームワークであるFedMentalCareを提案する。
FL環境における各種クライアントデータボリュームとモデルアーキテクチャ(MobileBERT, MiniLMなど)の性能への影響について検討する。
我々のフレームワークは、現実のメンタルヘルスシナリオにLSMをデプロイするためのスケーラブルでプライバシに配慮したアプローチを示し、データのセキュリティと計算効率の課題に対処する。
関連論文リスト
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
精神病は、社会的、個人的コストがかなり高い広範囲で不安定な状態である。
近年の人工知能(AI)の進歩は、うつ病、不安障害、双極性障害、統合失調症、外傷後ストレス障害などの病態を認識し、対処するための大きな可能性を秘めている。
データセットやトレーニング済みモデルからの機密データ漏洩のリスクを含むプライバシー上の懸念は、これらのAIシステムを実際の臨床環境にデプロイする上で、依然として重要な障壁である。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - Can AI Relate: Testing Large Language Model Response for Mental Health Support [23.97212082563385]
大型言語モデル(LLM)はすでにニューヨーク・ラングーン、ダナ・ファーバー、NHSなどの病院システムで臨床使用のために試験されている。
精神医療の自動化に向けて, LLM 反応が有効かつ倫理的な道筋であるか否かを評価するための評価枠組みを開発する。
論文 参考訳(メタデータ) (2024-05-20T13:42:27Z) - The opportunities and risks of large language models in mental health [3.9327284040785075]
メンタルヘルスの国際レートは上昇している。
既存のメンタルヘルスのモデルは、需要を満たすために十分に拡大しない、という認識が高まっている。
大規模言語モデル(LLM)の出現は、メンタルヘルスをサポートする新しい大規模ソリューションを作成するという彼らの約束に関して、非常に楽観的になっている。
論文 参考訳(メタデータ) (2024-03-21T19:59:52Z) - Retrieval Augmented Thought Process for Private Data Handling in Healthcare [53.89406286212502]
Retrieval-Augmented Thought Process (RATP)を紹介する。
RATPは大規模言語モデル(LLM)の思考生成を定式化する
電子カルテのプライベートデータセットにおいて、RATPは、質問応答タスクのコンテキスト内検索強化生成と比較して35%の精度を達成している。
論文 参考訳(メタデータ) (2024-02-12T17:17:50Z) - Challenges of Large Language Models for Mental Health Counseling [4.604003661048267]
世界のメンタルヘルス危機は、精神疾患の急速な増加、限られた資源、治療を求める社会的便宜によって悪化している。
メンタルヘルス領域における大規模言語モデル(LLM)の適用は、提供された情報の正確性、有効性、信頼性に関する懸念を提起する。
本稿では, モデル幻覚, 解釈可能性, バイアス, プライバシ, 臨床効果など, 心理カウンセリングのためのLSMの開発に伴う課題について検討する。
論文 参考訳(メタデータ) (2023-11-23T08:56:41Z) - Benefits and Harms of Large Language Models in Digital Mental Health [40.02859683420844]
大型言語モデル (LLMs) は、デジタルメンタルヘルスを未知の領域に導くことを約束している。
本稿では、デジタルメンタルヘルスツールの設計、開発、実装においてLLMがもたらす可能性とリスクについて、現代の展望を示す。
論文 参考訳(メタデータ) (2023-11-07T14:11:10Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting [24.201549275369487]
本稿では,大規模言語モデルの専門知識を活用して,プライバシ制限シナリオ下での医療タスクにおけるSLM性能を向上させる手法を提案する。
具体的には、医療データからキーワードを抽出し、LLMに医療知識集約的なコンテキストを生成することで、患者のプライバシ問題を緩和する。
本手法は,3つの医療知識集約タスクにおいて,数ショットとフルトレーニングの双方において,パフォーマンスを著しく向上させる。
論文 参考訳(メタデータ) (2023-05-22T05:14:38Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。