EXALT: EXplainable ALgorithmic Tools for Optimization Problems
- URL: http://arxiv.org/abs/2503.05789v1
- Date: Fri, 28 Feb 2025 10:28:20 GMT
- Title: EXALT: EXplainable ALgorithmic Tools for Optimization Problems
- Authors: Zuzanna Bączek, Michał Bizoń, Aneta Pawelec, Piotr Sankowski,
- Abstract summary: This project proposes a novel approach to developing explainable algorithms by starting with optimization problems.<n>The developed software library enriches basic algorithms with human-understandable explanations through four key methodologies.
- Score: 2.1184929769291294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic solutions have significant potential to improve decision-making across various domains, from healthcare to e-commerce. However, the widespread adoption of these solutions is hindered by a critical challenge: the lack of human-interpretable explanations. Current approaches to Explainable AI (XAI) predominantly focus on complex machine learning models, often producing brittle and non-intuitive explanations. This project proposes a novel approach to developing explainable algorithms by starting with optimization problems, specifically the assignment problem. The developed software library enriches basic algorithms with human-understandable explanations through four key methodologies: generating meaningful alternative solutions, creating robust solutions through input perturbation, generating concise decision trees and providing reports with comprehensive explanation of the results. Currently developed tools are often designed with specific clustering algorithms in mind, which limits their adaptability and flexibility to incorporate alternative techniques. Additionally, many of these tools fail to integrate expert knowledge, which could enhance the clustering process by providing valuable insights and context. This lack of adaptability and integration can hinder the effectiveness and robustness of the clustering outcomes in various applications. The represents a step towards making algorithmic solutions more transparent, trustworthy, and accessible. By collaborating with industry partners in sectors such as sales, we demonstrate the practical relevance and transformative potential of our approach.
Related papers
- Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization [56.17811386955609]
Graph-structured challenges are inherently difficult due to their nonlinear and intricate nature.<n>In this study, we propose transforming graphs into images to preserve their higher-order structural features accurately.<n>By combining the innovative paradigm powered by multimodal large language models with simple search techniques, we aim to develop a novel and effective framework.
arXiv Detail & Related papers (2025-01-21T08:28:10Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - A Unifying Post-Processing Framework for Multi-Objective Learn-to-Defer Problems [6.046591474843391]
Learn-to-Defer is a paradigm that enables learning algorithms to work not in isolation but as a team with human experts.
In this paper, we obtain the Bayes optimal solution for learn-to-defer systems under various constraints.
Our algorithm shows improvements in terms of constraint violation over a set of baselines.
arXiv Detail & Related papers (2024-07-17T16:32:30Z) - Mining Potentially Explanatory Patterns via Partial Solutions [39.58317527488534]
We present an algorithm that assembles a collection of Partial Solutions chosen to strike a balance between high fitness, simplicity and atomicity.
Experiments with standard benchmarks show that the proposed algorithm is able to find Partial Solutions which improve explainability at reasonable computational cost without affecting search performance.
arXiv Detail & Related papers (2024-04-05T20:12:02Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
Data-driven optimization uses contextual information and machine learning algorithms to find solutions to decision problems with uncertain parameters.
We introduce a counterfactual explanation methodology tailored to explain solutions to data-driven problems.
We demonstrate our approach by explaining key problems in operations management such as inventory management and routing.
arXiv Detail & Related papers (2023-01-24T15:25:16Z) - A Survey on Influence Maximization: From an ML-Based Combinatorial
Optimization [2.9882027965916413]
Influence Maximization (IM) is a classical optimization problem, which can be widely used in mobile networks, social computing, and recommendation systems.
Main challenge comes from the NP-hardness of the IM problem and #P-hardness of estimating the influence spread.
We focus on summarizing the relevant background knowledge, basic principles, common methods, and applied research.
arXiv Detail & Related papers (2022-11-06T10:13:42Z) - An Interactive Knowledge-based Multi-objective Evolutionary Algorithm
Framework for Practical Optimization Problems [5.387300498478744]
This paper proposes an interactive knowledge-based evolutionary multi-objective optimization (IK-EMO) framework.
It extracts hidden variable-wise relationships as knowledge from evolving high-performing solutions, shares them with users to receive feedback, and applies them back to the optimization process to improve its effectiveness.
The working of the proposed IK-EMO is demonstrated on three large-scale real-world engineering design problems.
arXiv Detail & Related papers (2022-09-18T16:51:01Z) - A Framework for Inherently Interpretable Optimization Models [0.0]
Solution of large-scale problems that seemed intractable decades ago are now a routine task.
One major barrier is that the optimization software can be perceived as a black box.
We propose an optimization framework to derive solutions that inherently come with an easily comprehensible explanatory rule.
arXiv Detail & Related papers (2022-08-26T10:32:00Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z) - Discovering Representations for Black-box Optimization [73.59962178534361]
We show that black-box optimization encodings can be automatically learned, rather than hand designed.
We show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites.
arXiv Detail & Related papers (2020-03-09T20:06:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.