An Interactive Knowledge-based Multi-objective Evolutionary Algorithm
Framework for Practical Optimization Problems
- URL: http://arxiv.org/abs/2209.08604v1
- Date: Sun, 18 Sep 2022 16:51:01 GMT
- Title: An Interactive Knowledge-based Multi-objective Evolutionary Algorithm
Framework for Practical Optimization Problems
- Authors: Abhiroop Ghosh, Kalyanmoy Deb, Erik Goodman, and Ronald Averill
- Abstract summary: This paper proposes an interactive knowledge-based evolutionary multi-objective optimization (IK-EMO) framework.
It extracts hidden variable-wise relationships as knowledge from evolving high-performing solutions, shares them with users to receive feedback, and applies them back to the optimization process to improve its effectiveness.
The working of the proposed IK-EMO is demonstrated on three large-scale real-world engineering design problems.
- Score: 5.387300498478744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Experienced users often have useful knowledge and intuition in solving
real-world optimization problems. User knowledge can be formulated as
inter-variable relationships to assist an optimization algorithm in finding
good solutions faster. Such inter-variable interactions can also be
automatically learned from high-performing solutions discovered at intermediate
iterations in an optimization run - a process called innovization. These
relations, if vetted by the users, can be enforced among newly generated
solutions to steer the optimization algorithm towards practically promising
regions in the search space. Challenges arise for large-scale problems where
the number of such variable relationships may be high. This paper proposes an
interactive knowledge-based evolutionary multi-objective optimization (IK-EMO)
framework that extracts hidden variable-wise relationships as knowledge from
evolving high-performing solutions, shares them with users to receive feedback,
and applies them back to the optimization process to improve its effectiveness.
The knowledge extraction process uses a systematic and elegant graph analysis
method which scales well with number of variables. The working of the proposed
IK-EMO is demonstrated on three large-scale real-world engineering design
problems. The simplicity and elegance of the proposed knowledge extraction
process and achievement of high-performing solutions quickly indicate the power
of the proposed framework. The results presented should motivate further such
interaction-based optimization studies for their routine use in practice.
Related papers
- Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Achieving Diversity in Objective Space for Sample-efficient Search of
Multiobjective Optimization Problems [4.732915763557618]
We introduce the Likelihood of Metric Satisfaction (LMS) acquisition function, analyze its behavior and properties, and demonstrate its viability on various problems.
This method presents decision makers with a robust pool of promising design decisions and helps them better understand the space of good solutions.
arXiv Detail & Related papers (2023-06-23T20:42:22Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Learning Adaptive Evolutionary Computation for Solving Multi-Objective
Optimization Problems [3.3266268089678257]
This paper proposes a framework that integrates MOEAs with adaptive parameter control using Deep Reinforcement Learning (DRL)
The DRL policy is trained to adaptively set the values that dictate the intensity and probability of mutation for solutions during optimization.
We show the learned policy is transferable, i.e., the policy trained on a simple benchmark problem can be directly applied to solve the complex warehouse optimization problem.
arXiv Detail & Related papers (2022-11-01T22:08:34Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.