論文の概要: GNN-Enhanced Fault Diagnosis Method for Parallel Cyber-physical Attacks in Power Grids
- arxiv url: http://arxiv.org/abs/2503.05797v2
- Date: Thu, 07 Aug 2025 02:30:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 21:11:55.524599
- Title: GNN-Enhanced Fault Diagnosis Method for Parallel Cyber-physical Attacks in Power Grids
- Title(参考訳): GNNによる電力グリッドにおける並列サイバー物理攻撃の故障診断法
- Authors: Junhao Ren, Kai Zhao, Guangxiao Zhang, Xinghua Liu, Chao Zhai, Gaoxi Xiao,
- Abstract要約: パラレルサイバー物理攻撃(PCPA)は、物理的伝送路を損傷し、電力グリッドにおける計測データ伝送をブロックする。
本稿では,PCPA 下での線形化 (DC) 電力流モデルにおける故障診断問題について検討する。
本稿では,メタ混合整数プログラミング(MMIP)に基づく故障診断フレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.219266802392682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parallel cyber-physical attacks (PCPA) simultaneously damage physical transmission lines and block measurement data transmission in power grids, impairing or delaying system protection and recovery. This paper investigates the fault diagnosis problem for a linearized (DC) power flow model under PCPA. The physical attack mechanism includes not only line disconnection but also admittance modification, for example via compromised distributed flexible AC transmission system (D-FACTS) devices. To address this problem, we propose a fault diagnosis framework based on meta-mixed-integer programming (MMIP), integrating graph attention network-based fault localization (GAT-FL). First, we derive measurement reconstruction conditions that allow reconstructing unknown measurements in attacked areas from available measurements and the system topology. Based on these conditions, we formulate the diagnosis task as an MMIP model. The GAT-FL predicts a probability distribution over potential physical attacks, which is then incorporated as objective coefficients in the MMIP. Solving the MMIP yields optimal attack location and magnitude estimates, from which the system states are also reconstructed. Experimental simulations are conducted on IEEE 30/118 bus standard test cases to demonstrate the effectiveness of the proposed fault diagnosis algorithms.
- Abstract(参考訳): パラレルサイバー物理攻撃(PCPA)は、物理的伝送路を同時に損傷し、電力グリッドにおける計測データ送信をブロックし、システムの保護と回復を障害または遅延させる。
本稿では,PCPA 下での線形化 (DC) 電力流モデルにおける故障診断問題について検討する。
物理的攻撃機構は、線切断だけでなく、例えば、妥協された分散フレキシブルAC伝送システム(D-FACTS)デバイスを介して、アプタンス修正も含む。
本稿では,メタ混合整数プログラミング(MMIP)に基づく故障診断フレームワークを提案する。
まず,攻撃地域における未知の測定を,利用可能な測定値とシステムトポロジから再構成できる計測再構成条件を導出する。
これらの条件に基づき,診断タスクをMMIPモデルとして定式化する。
GAT-FLは、潜在的な物理的攻撃に対する確率分布を予測し、MMIPに目的係数として組み込む。
MMIPを解くことで最適な攻撃位置と等級推定が得られ、システム状態も再構築される。
IEEE 30/118バス標準テストケースにおいて,提案した故障診断アルゴリズムの有効性を実証するために実験シミュレーションを行った。
関連論文リスト
- A Review of Detection, Evolution, and Data Reconstruction Strategies for False Data Injection Attacks in Power Cyber-Physical Systems [0.0]
現代の電力網における情報システムと物理システムの統合は、偽データインジェクション攻撃(FDIA)の脆弱性を高めた
本稿では、FDIA検出、進化、データ再構成戦略を概観し、ドメイン間の協調、多時期的進化、ステルス特性について述べる。
論文 参考訳(メタデータ) (2025-01-13T22:28:04Z) - Predicting Cascading Failures with a Hyperparametric Diffusion Model [66.89499978864741]
拡散モデルのレンズによる電力グリッドのカスケード故障について検討する。
我々のモデルは、バイラル拡散原理と物理に基づく概念を統合する。
この拡散モデルはカスケード故障の痕跡から学習可能であることを示す。
論文 参考訳(メタデータ) (2024-06-12T02:34:24Z) - Defense against Joint Poison and Evasion Attacks: A Case Study of DERMS [2.632261166782093]
IDSの第1の枠組みは, ジョイント中毒や回避攻撃に対して堅牢である。
IEEE-13バスフィードモデルにおける本手法のロバスト性を検証する。
論文 参考訳(メタデータ) (2024-05-05T16:24:30Z) - Physics-Informed Convolutional Autoencoder for Cyber Anomaly Detection
in Power Distribution Grids [0.0]
本稿では,物理インフォームド・コンボリューション・オートエンコーダ(PIConvAE)を提案する。
提案モデルは、Kirchhoffの法則を適用して、ニューラルネットワークの損失関数に物理原理を統合する。
論文 参考訳(メタデータ) (2023-12-08T00:05:13Z) - Electrical Grid Anomaly Detection via Tensor Decomposition [41.94295877935867]
従来の研究では、SCADAシステム内の異常を正確に識別するために次元減少に基づくアプローチが利用できることが示されている。
本研究では,SCADAシステムにおける異常を識別するために,テンソル分解法であるCanonical Polyadic Alternating Poisson Regressionを確率的枠組みで適用する。
実験では,ロスアラモス国立研究所が運営する電力網から収集した実世界のSCADAシステムデータをモデル化した。
論文 参考訳(メタデータ) (2023-10-12T18:23:06Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
我々は、産業制御システムに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発する。
このフレームワークは、可変オートエンコーダ(VAE)、リカレントニューラルネットワーク(RNN)、ディープニューラルネットワーク(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2023-10-10T19:07:53Z) - Extracting Physical Causality from Measurements to Detect and Localize
False Data Injection Attacks [21.24888533553016]
本稿では、因果推論とグラフ注意ネットワーク(GAT)に基づく共同FDIA検出と位置決めフレームワークを提案する。
提案するフレームワークは,2つのレベルから構成される。下位レベルはX-learnerアルゴリズムを用いて測定間の因果強度を推定し,測定因果グラフ(MCG)を生成する。
実験結果から、因果性に基づくFDIAの検出と位置決め機構は、非常に解釈可能で堅牢であることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-21T03:36:25Z) - Physics-Constrained Backdoor Attacks on Power System Fault Localization [1.1683938179815823]
本研究は,物理に制約されたバックドア毒殺攻撃を提案する。
学習したモデルに検出不能な攻撃信号を埋め込み、対応する信号に遭遇したときのみ攻撃を実行する。
提案した攻撃パイプラインは、他のパワーシステムタスクに容易に一般化できる。
論文 参考訳(メタデータ) (2022-11-07T12:57:26Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Hybrid AI-based Anomaly Detection Model using Phasor Measurement Unit
Data [0.41998444721319217]
ファサー計測装置(PMU)を用いて電力システムを監視することは、将来有望な技術の一つである。
サイバー物理的相互作用の増加は、利点と欠点の両方をもたらし、そこでは、測定データの異常の形で欠点の1つが生まれる。
本稿では,PMUデータにおける異常検出の様々な手法に基づくハイブリッドAIベースモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2022-09-21T11:22:01Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
人為的なシステムのレジリエンスを、予期せぬ事象に対して向上させるためのエンドツーエンドのフレームワークを実証する。
このフレームワークは物理ベースのデジタルツインモデルと,リアルタイム故障診断,予後,再構成を行う3つのモジュールに基づいている。
論文 参考訳(メタデータ) (2022-08-30T20:16:17Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
本稿では,無線環境における回帰問題を考察し,敵攻撃がDLベースのアプローチを損なう可能性があることを示す。
また,攻撃に対するDLベースの無線システムの堅牢性が著しく向上することを示す。
論文 参考訳(メタデータ) (2022-06-14T04:55:11Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
事前学習されたLeNet-5畳み込みニューラルネットワークに基づく新しい伝達学習フレームワークを提案する。
ソースニューラルネットワークから知識を転送して、異種ターゲットデータセットを予測することで、異なる伝送ラインの長さとインピーダンスの障害を診断することができる。
論文 参考訳(メタデータ) (2022-01-20T06:36:35Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Online Dictionary Learning Based Fault and Cyber Attack Detection for
Power Systems [4.657875410615595]
本稿では,ストリームデータマイニング分類器を活用することで,イベント検出と侵入検出の問題に対処する。
まず、ラベルのないデータから高レベルな特徴を学習して辞書を構築する。
そして、ラベル付きデータは、学習した辞書原子の疎線形結合として表現される。
我々は、これらの余分なコードを利用して、オンライン分類器と効率的な変更検出器を訓練する。
論文 参考訳(メタデータ) (2021-08-24T23:17:58Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
本稿では,大規模なマルチインプット・マルチアウトプット(MAMIMO)ネットワークのダウンリンクにおいて,逆攻撃がDLベースの電力割り当てを損なう可能性があることを示す。
我々はこれらの攻撃のパフォーマンスをベンチマークし、ニューラルネットワーク(NN)の入力に小さな摂動がある場合、ホワイトボックス攻撃は最大86%まで実現不可能な解決策をもたらすことを示した。
論文 参考訳(メタデータ) (2021-01-28T16:18:19Z) - Resilient Identification of Distribution Network Topology [0.0]
本稿では,DERMSで利用可能な測定値のみに依存するネットワークTI関数を提案する。
提案手法は,ネットワークスイッチング構成と保護装置の状態を同定する。
計算負荷が低いため、このアプローチは高速トラックであり、リアルタイムアプリケーションに適用できる。
論文 参考訳(メタデータ) (2020-11-16T14:23:56Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。