論文の概要: A Review of Detection, Evolution, and Data Reconstruction Strategies for False Data Injection Attacks in Power Cyber-Physical Systems
- arxiv url: http://arxiv.org/abs/2501.10441v1
- Date: Mon, 13 Jan 2025 22:28:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-26 02:12:12.281068
- Title: A Review of Detection, Evolution, and Data Reconstruction Strategies for False Data Injection Attacks in Power Cyber-Physical Systems
- Title(参考訳): パワーサイバー物理システムにおける偽データ注入攻撃の検出・進化・データ再構成手法のレビュー
- Authors: Xiaoyong Bo,
- Abstract要約: 現代の電力網における情報システムと物理システムの統合は、偽データインジェクション攻撃(FDIA)の脆弱性を高めた
本稿では、FDIA検出、進化、データ再構成戦略を概観し、ドメイン間の協調、多時期的進化、ステルス特性について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The integration of information and physical systems in modern power grids has heightened vulnerabilities to False Data Injection Attacks (FDIAs), threatening the secure operation of power cyber-physical systems (CPS). This paper reviews FDIA detection, evolution, and data reconstruction strategies, highlighting cross-domain coordination, multi-temporal evolution, and stealth characteristics. Challenges in existing detection methods, including poor interpretability and data imbalance, are discussed, alongside advanced state-aware and action-control data reconstruction techniques. Key issues, such as modeling FDIA evolution and distinguishing malicious data from regular faults, are identified. Future directions to enhance system resilience and detection accuracy are proposed, contributing to the secure operation of power CPS.
- Abstract(参考訳): 現代の電力網における情報システムと物理システムの統合は、False Data Injection Attacks (FDIA)の脆弱性を高め、電力サイバー物理システムの安全な運用を脅かしている。
本稿では、FDIA検出、進化、データ再構成戦略を概観し、ドメイン間の協調、多時期的進化、ステルス特性について述べる。
本研究は,高度な状態認識と行動制御データ再構成技術とともに,解釈可能性の低下やデータの不均衡といった既存の検出手法の課題について論じる。
FDIAの進化をモデル化したり、悪意のあるデータを通常の障害と区別したりするといった重要な課題が特定される。
システムのレジリエンスと検出精度を高めるための今後の方向性が提案され、電力CPSの安全な運用に寄与する。
関連論文リスト
- Physical and Software Based Fault Injection Attacks Against TEEs in Mobile Devices: A Systemisation of Knowledge [5.6064476854380825]
Trusted Execution Environments (TEE) は、現代のセキュアコンピューティングの重要なコンポーネントである。
機密データを保護し、セキュアな操作を実行するために、プロセッサに分離されたゾーンを提供する。
その重要性にもかかわらず、TEEは障害注入(FI)攻撃に対してますます脆弱である。
論文 参考訳(メタデータ) (2024-11-22T11:59:44Z) - An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids [0.0]
本稿では,不均衡配電系統における偽データインジェクション攻撃(FDIA)を検出するために,教師なし対向オートエンコーダ(AAE)モデルを提案する。
提案手法は,オートエンコーダの構造における長期記憶(LSTM)を用いて,時系列計測における時間依存性をキャプチャする。
IEEE 13-bus と 123-bus で、歴史的気象データと歴史的実世界の負荷データを用いてテストされている。
論文 参考訳(メタデータ) (2024-03-31T01:20:01Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
本研究では,電力網における多段階サイバー攻撃の合成データを生成するモデルを提案する。
攻撃者のステップのシーケンスをモデル化するためにアタックツリーを使用し、ディフェンダーのアクションを組み込むゲーム理論のアプローチを使用する。
論文 参考訳(メタデータ) (2023-12-21T09:54:18Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Cross-Layered Distributed Data-driven Framework For Enhanced Smart Grid
Cyber-Physical Security [3.8237485961848128]
Adaptive Statisticsを使用したクロスレイヤアンサンブルCorrDetが紹介される。
故障したSG測定データの検出と、ネットワーク間時間と送信遅延の一貫性の欠如を統合する。
その結果,CECD-ASは複数のFalse Data Injection, Denial of Service (DoS) および Man In The Middle (MITM) 攻撃を高いF1スコアで検出できることがわかった。
論文 参考訳(メタデータ) (2021-11-10T00:00:51Z) - Multi-Source Data Fusion for Cyberattack Detection in Power Systems [1.8914160585516038]
複数のデータソースからの情報を融合することで,サイバーインシデントの発生を識別し,偽陽性を低減できることが示されている。
我々は、サイバー物理電力システムテストベッドでIDSを訓練するためのマルチソースデータ融合を行う。
提案するデータ融合アプリケーションを用いて偽データとコマンドインジェクションに基づく中間攻撃を推測する。
論文 参考訳(メタデータ) (2021-01-18T06:34:45Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。