論文の概要: ElementaryNet: A Non-Strategic Neural Network for Predicting Human Behavior in Normal-Form Games
- arxiv url: http://arxiv.org/abs/2503.05925v2
- Date: Fri, 08 Aug 2025 23:36:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 16:55:52.156838
- Title: ElementaryNet: A Non-Strategic Neural Network for Predicting Human Behavior in Normal-Form Games
- Title(参考訳): BasicNet: ノーマルフォームゲームにおける人間の行動予測のための非定型ニューラルネットワーク
- Authors: Greg d'Eon, Hala Murad, Kevin Leyton-Brown, James R. Wright,
- Abstract要約: 行動ゲーム理論モデルは、人間の意思決定の仕組みに関する洞察を得ることと、人々が新しい戦略的な環境でどのように振る舞うかを予測することである。
GameNetと呼ばれるシステムは、反復しない同時移動ゲームの設定において人間の振る舞いを予測する技術の現状を表す。
本研究では,プライマリネットの特徴を変化させ,そのパラメータを解釈することにより,人間の行動に関する洞察を導き出すことが可能であることを示す。
- 参考スコア(独自算出の注目度): 11.093095696026861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Behavioral game theory models serve two purposes: yielding insights into how human decision-making works, and predicting how people would behave in novel strategic settings. A system called GameNet represents the state of the art for predicting human behavior in the setting of unrepeated simultaneous-move games, combining a simple "level-k" model of strategic reasoning with a complex neural network model of non-strategic "level-0" behavior. Although this reliance on well-established ideas from cognitive science ought to make GameNet interpretable, the flexibility of its level-0 model raises the possibility that it is able to emulate strategic reasoning. In this work, we prove that GameNet's level-0 model is indeed too general. We then introduce ElementaryNet, a novel neural network that is provably incapable of expressing strategic behavior. We show that these additional restrictions are empirically harmless, leading ElementaryNet to statistically indistinguishable predictive performance vs GameNet. We then show how it is possible to derive insights about human behavior by varying ElementaryNet's features and interpreting its parameters, finding evidence of iterative reasoning, learning about the depth of this reasoning process, and showing the value of a rich level-0 specification.
- Abstract(参考訳): 行動ゲーム理論モデルは、人間の意思決定の仕組みに関する洞察を得ることと、人々が新しい戦略的な環境でどのように振る舞うかを予測することである。
GameNetと呼ばれるシステムは、戦略推論のシンプルな「レベル-k」モデルと、非戦略的な「レベル-0」動作の複雑なニューラルネットワークモデルを組み合わせた、反復しない同時移動ゲームの設定における人間の行動を予測するための最先端技術を表している。
この認知科学からの確立されたアイデアへの依存は、GameNetを解釈可能にするべきであるが、レベル0モデルの柔軟性は、戦略的推論をエミュレートできる可能性を高める。
本稿では,GameNetのレベル0モデルがあまりにも一般的であることを示す。
次に,戦略行動を表現することのできない新しいニューラルネットワークであるプライマリネットを紹介する。
これらの追加の制限は経験的に無害であることを示し、この結果、BonlyNetは統計的に区別不能な予測性能をGameNetと比較した。
次に,プライマリネットの特徴を変化させ,そのパラメータを解釈し,反復的推論の証拠を発見し,この推論プロセスの深さを学習し,リッチなレベル0仕様の価値を示すことによって,人間の行動に関する洞察を導出する方法を示す。
関連論文リスト
- Graph Mining under Data scarcity [6.229055041065048]
汎用グラフニューラルネットワーク(GNN)上に適用可能な不確実性推定フレームワークを提案する。
エンド・ツー・エンドの設定で、$n$-way、$k$-shotという古典的なエピソード学習パラダイムの下でこれらのモデルをトレーニングします。
提案手法は,GNNを用いたグラフ上のFew-shotノード分類における不確実性推定器の有効性を示すベースラインよりも優れる。
論文 参考訳(メタデータ) (2024-06-07T10:50:03Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
ネットワークトレーニングと一般化の解決可能なモデルとして,勾配降下で訓練されたランダムな特徴モデルを分析する。
我々の理論は、データの繰り返し再利用により、トレーニングとテスト損失のギャップが徐々に増大することを示している。
論文 参考訳(メタデータ) (2024-02-02T01:41:38Z) - Game-Theoretic Unlearnable Example Generator [18.686469222136854]
学習不可能な例攻撃は、トレーニングサンプルに知覚不能な摂動を加えることによって、ディープラーニングのクリーンなテスト精度を低下させることを目的としている。
本稿では,非ゼロ和スタックルバーグゲームとしてアタックを定式化することにより,ゲーム理論の観点からの未知の例攻撃について検討する。
本稿では,3つの主要な勾配を持つGUE(Game Unlearnable Example)と呼ばれる新たな攻撃手法を提案する。
論文 参考訳(メタデータ) (2024-01-31T00:43:30Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
ニューラルネットワークパラメータの平均化は、2つの独立したモデルの知識の直感的な方法である。
フェデレートラーニングにおいて最も顕著に用いられている。
私たちは、単一グループやグループを平均化するモデルの性能を分析します。
論文 参考訳(メタデータ) (2023-07-13T09:39:10Z) - NetHack is Hard to Hack [37.24009814390211]
NeurIPS 2021 NetHack Challengeでは、シンボリックエージェントは中央値のゲームスコアにおいて、ニューラルネットワークのアプローチを4倍以上に上回りました。
我々はNetHackのニューラルポリシー学習について広範な研究を行っている。
従来の完全なニューラルポリシーを127%のオフライン設定、25%のオンライン設定を中央値のゲームスコアで上回る最先端のニューラルエージェントを作成しました。
論文 参考訳(メタデータ) (2023-05-30T17:30:17Z) - Neural Additive Models for Location Scale and Shape: A Framework for
Interpretable Neural Regression Beyond the Mean [1.0923877073891446]
ディープニューラルネットワーク(DNN)は、様々なタスクで非常に効果的であることが証明されている。
この成功にもかかわらず、DNNの内部構造はしばしば透明ではない。
この解釈可能性の欠如は、本質的に解釈可能なニューラルネットワークの研究の増加につながった。
論文 参考訳(メタデータ) (2023-01-27T17:06:13Z) - Improved Convergence Guarantees for Shallow Neural Networks [91.3755431537592]
勾配降下法により訓練された深度2ニューラルネットの収束度を世界最小とする。
我々のモデルには、二次損失関数による回帰、完全連結フィードフォワードアーキテクチャ、RelUアクティベーション、ガウスデータインスタンス、逆ラベルといった特徴がある。
彼らは、少なくとも我々のモデルでは、収束現象がNTK体制をはるかに超越していることを強く示唆している」。
論文 参考訳(メタデータ) (2022-12-05T14:47:52Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
人間の事前知識とエンドツーエンドの学習を組み合わせることで、ディープニューラルネットワークの堅牢性を向上させることができることを示す。
我々のモデルは、部分分割モデルと小さな分類器を組み合わせて、オブジェクトを同時に部品に分割するようにエンドツーエンドに訓練されている。
実験の結果,これらのモデルによりテクスチャバイアスが低減され,一般的な汚職に対する堅牢性が向上し,相関が急上昇することが示唆された。
論文 参考訳(メタデータ) (2022-09-15T15:41:47Z) - Towards Disentangling Information Paths with Coded ResNeXt [11.884259630414515]
ネットワーク全体の機能の透明性を高めるために,我々は新しいアプローチを採っている。
分類のためのニューラルネットワークアーキテクチャを提案し、各クラスに関連する情報が特定の経路を流れる。
論文 参考訳(メタデータ) (2022-02-10T21:45:49Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - CompGuessWhat?!: A Multi-task Evaluation Framework for Grounded Language
Learning [78.3857991931479]
本稿では,属性を用いたグラウンドド言語学習のための評価フレームワークGROLLAを提案する。
また、学習したニューラル表現の品質を評価するためのフレームワークの例として、新しいデータセットCompGuessWhat!?を提案する。
論文 参考訳(メタデータ) (2020-06-03T11:21:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。