論文の概要: STAR: A Foundation Model-driven Framework for Robust Task Planning and Failure Recovery in Robotic Systems
- arxiv url: http://arxiv.org/abs/2503.06060v1
- Date: Sat, 08 Mar 2025 05:05:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:48.484383
- Title: STAR: A Foundation Model-driven Framework for Robust Task Planning and Failure Recovery in Robotic Systems
- Title(参考訳): STAR:ロボットシステムにおけるロバストなタスク計画と障害復旧のための基礎モデル駆動フレームワーク
- Authors: Md Sadman Sakib, Yu Sun,
- Abstract要約: STAR(Smart Task Adaptation and Recovery)は、ファンデーションモデル(FM)と動的に拡張された知識グラフ(KG)を相乗化する新しいフレームワークである。
FMは目覚ましい一般化と文脈推論を提供するが、その制限は信頼性を損なう。
その結果,STARは86%のタスク計画精度と78%のリカバリ成功率を示し,ベースライン法よりも有意な改善を示した。
- 参考スコア(独自算出の注目度): 5.426894918217948
- License:
- Abstract: Modern robotic systems, deployed across domains from industrial automation to domestic assistance, face a critical challenge: executing tasks with precision and adaptability in dynamic, unpredictable environments. To address this, we propose STAR (Smart Task Adaptation and Recovery), a novel framework that synergizes Foundation Models (FMs) with dynamically expanding Knowledge Graphs (KGs) to enable resilient task planning and autonomous failure recovery. While FMs offer remarkable generalization and contextual reasoning, their limitations, including computational inefficiency, hallucinations, and output inconsistencies hinder reliable deployment. STAR mitigates these issues by embedding learned knowledge into structured, reusable KGs, which streamline information retrieval, reduce redundant FM computations, and provide precise, scenario-specific insights. The framework leverages FM-driven reasoning to diagnose failures, generate context-aware recovery strategies, and execute corrective actions without human intervention or system restarts. Unlike conventional approaches that rely on rigid protocols, STAR dynamically expands its KG with experiential knowledge, ensuring continuous adaptation to novel scenarios. To evaluate the effectiveness of this approach, we developed a comprehensive dataset that includes various robotic tasks and failure scenarios. Through extensive experimentation, STAR demonstrated an 86% task planning accuracy and 78% recovery success rate, showing significant improvements over baseline methods. The framework's ability to continuously learn from experience while maintaining structured knowledge representation makes it particularly suitable for long-term deployment in real-world applications.
- Abstract(参考訳): 現代のロボットシステムは、産業の自動化から家庭の援助まで、複数の分野にまたがって展開されているが、重要な課題に直面している: 動的で予測不可能な環境で、正確で適応性のあるタスクを実行する。
この問題を解決するために、我々は、ファンデーションモデル(FM)を動的に拡張する知識グラフ(KG)と相乗化する新しいフレームワークであるSTAR(Smart Task Adaptation and Recovery)を提案し、レジリエントなタスク計画と自律的な障害復旧を実現する。
FMは顕著な一般化と文脈推論を提供するが、計算の非効率性、幻覚、出力の不整合などの制限は信頼性を損なう。
STARは、学習した知識を構造化された再利用可能なKGに埋め込むことでこれらの問題を緩和し、情報検索を効率化し、冗長なFM計算を削減し、正確なシナリオ固有の洞察を提供する。
このフレームワークは、FM駆動推論を利用して障害を診断し、コンテキスト対応の回復戦略を生成し、人間の介入やシステム再起動なしに修正アクションを実行する。
厳密なプロトコルに依存する従来のアプローチとは異なり、STARは経験的な知識でKGを動的に拡張し、新しいシナリオへの継続的な適応を保証する。
提案手法の有効性を評価するため,様々なロボットタスクや障害シナリオを含む包括的データセットを開発した。
広範な実験を通じて、STARは86%のタスク計画精度と78%のリカバリ成功率を示し、ベースライン法よりも大幅に改善した。
構造化知識表現を維持しながら経験から継続的に学習するフレームワークの能力は、現実世界のアプリケーションにおける長期展開に特に適しています。
関連論文リスト
- Agentic AI-Driven Technical Troubleshooting for Enterprise Systems: A Novel Weighted Retrieval-Augmented Generation Paradigm [0.0]
本稿では,企業の技術的トラブルシューティングに適したRAG(Weighted Retrieval-Augmented Generation)フレームワーク上に構築されたエージェントAIソリューションを提案する。
製品マニュアル、内部知識ベース、FAQ、トラブルシューティングガイドなどの検索ソースを動的に重み付けすることで、最も関連性の高いデータを優先順位付けする。
大規模エンタープライズデータセットに関する予備評価では、トラブルシューティングの精度を改善し、解決時間を短縮し、さまざまな技術的課題に適応する上で、フレームワークの有効性が示されている。
論文 参考訳(メタデータ) (2024-12-16T17:32:38Z) - On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability [59.72892401927283]
さまざまなベンチマークタスクでOpenAIのo1モデルの計画能力を評価する。
その結果,o1-preview は GPT-4 よりもタスク制約に順応していることがわかった。
論文 参考訳(メタデータ) (2024-09-30T03:58:43Z) - RmGPT: Rotating Machinery Generative Pretrained Model [20.52039868199533]
本稿では,診断・予後タスクの統一モデルであるRmGPTを提案する。
RmGPTは、Signal Tokens、Prompt Tokens、Time-Frequency Task Tokens、Fault Tokensといった新しいトークンベースのフレームワークを導入している。
実験では、RmGPTは最先端のアルゴリズムを著しく上回り、診断タスクではほぼ完璧な精度、予後タスクでは例外的に低い誤差を達成している。
論文 参考訳(メタデータ) (2024-09-26T07:40:47Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - Recover: A Neuro-Symbolic Framework for Failure Detection and Recovery [2.0554045007430672]
本稿では,オンライン障害識別と回復のためのニューロシンボリック・フレームワークであるRecoverを紹介する。
論理ルールとLLMベースのプランナを統合することで、Recoverはシンボル情報を利用してLLMの回復計画を生成する能力を高める。
論文 参考訳(メタデータ) (2024-03-31T17:54:22Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Dyna-bAbI: unlocking bAbI's potential with dynamic synthetic
benchmarking [16.109330335379962]
Dyna-bAbIは動的フレームワークであり、bAbIのタスク生成を細かく制御する。
構成一般化を必要とする3つの新しいタスクを構築することで、私たちのアイデアを実証する。
論文 参考訳(メタデータ) (2021-11-30T20:36:56Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
強化学習(Reinforcement Learning, RL)は,現実のアプリケーションに対して限られた成功を収める,有望なアプローチである。
本稿では,複数の側面からなる学習型制御フレームワークを提案する。
ECBFをベースとしたモジュラーディープRLアルゴリズムは,ほぼ完全な成功率を達成し,高い確率で安全性を保護することを示す。
論文 参考訳(メタデータ) (2021-09-07T00:51:12Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。