PointDiffuse: A Dual-Conditional Diffusion Model for Enhanced Point Cloud Semantic Segmentation
- URL: http://arxiv.org/abs/2503.06094v2
- Date: Tue, 11 Mar 2025 14:59:28 GMT
- Title: PointDiffuse: A Dual-Conditional Diffusion Model for Enhanced Point Cloud Semantic Segmentation
- Authors: Yong He, Hongshan Yu, Mingtao Feng, Tongjia Chen, Zechuan Li, Anwaar Ulhaq, Saeed Anwar, Ajmal Saeed Mian,
- Abstract summary: We extend diffusion models to point cloud semantic segmentation, where point positions remain fixed and the diffusion model generates point labels instead of colors.<n>We integrate the proposed noisy label embedding, point frequency transformer and denoising PointNet in our proposed dual conditional diffusion model-based network (PointDiffuse) to perform large-scale point cloud semantic segmentation.
- Score: 22.944385071108716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion probabilistic models are traditionally used to generate colors at fixed pixel positions in 2D images. Building on this, we extend diffusion models to point cloud semantic segmentation, where point positions also remain fixed, and the diffusion model generates point labels instead of colors. To accelerate the denoising process in reverse diffusion, we introduce a noisy label embedding mechanism. This approach integrates semantic information into the noisy label, providing an initial semantic reference that improves the reverse diffusion efficiency. Additionally, we propose a point frequency transformer that enhances the adjustment of high-level context in point clouds. To reduce computational complexity, we introduce the position condition into MLP and propose denoising PointNet to process the high-resolution point cloud without sacrificing geometric details. Finally, we integrate the proposed noisy label embedding, point frequency transformer and denoising PointNet in our proposed dual conditional diffusion model-based network (PointDiffuse) to perform large-scale point cloud semantic segmentation. Extensive experiments on five benchmarks demonstrate the superiority of PointDiffuse, achieving the state-of-the-art mIoU of 74.2\% on S3DIS Area 5, 81.2\% on S3DIS 6-fold and 64.8\% on SWAN dataset.
Related papers
- Diffusion-Occ: 3D Point Cloud Completion via Occupancy Diffusion [5.189790379672664]
We introduce textbfDiffusion-Occ, a novel framework for Diffusion Point Cloud Completion.
By thresholding the occupancy field, we convert it into a complete point cloud.
Experimental results demonstrate that Diffusion-Occ outperforms existing discriminative and generative methods.
arXiv Detail & Related papers (2024-08-27T07:57:58Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
We introduce an SE(3) diffusion model-based point cloud registration framework for 6D object pose estimation in real-world scenarios.
Our approach formulates the 3D registration task as a denoising diffusion process, which progressively refines the pose of the source point cloud.
Experiments demonstrate that our diffusion registration framework presents outstanding pose estimation performance on the real-world TUD-L, LINEMOD, and Occluded-LINEMOD datasets.
arXiv Detail & Related papers (2023-10-26T12:47:26Z) - TransUPR: A Transformer-based Uncertain Point Refiner for LiDAR Point
Cloud Semantic Segmentation [6.587305905804226]
We propose a transformer-based uncertain point refiner, i.e., TransUPR, to refine selected uncertain points in a learnable manner.
Our TransUPR achieves state-of-the-art performance, i.e., 68.2% mean Intersection over Union (mIoU) on the Semantic KITTI benchmark.
arXiv Detail & Related papers (2023-02-16T21:38:36Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - PUFA-GAN: A Frequency-Aware Generative Adversarial Network for 3D Point
Cloud Upsampling [56.463507980857216]
We propose a generative adversarial network for point cloud upsampling.
It can make the upsampled points evenly distributed on the underlying surface but also efficiently generate clean high frequency regions.
arXiv Detail & Related papers (2022-03-02T07:47:46Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
We propose a fast shape-based network (FS-Net) with efficient category-level feature extraction for 6D pose estimation.
The proposed method achieves state-of-the-art performance in both category- and instance-level 6D object pose estimation.
arXiv Detail & Related papers (2021-03-12T03:07:24Z) - Spherical Interpolated Convolutional Network with Distance-Feature
Density for 3D Semantic Segmentation of Point Clouds [24.85151376535356]
Spherical interpolated convolution operator is proposed to replace the traditional grid-shaped 3D convolution operator.
The proposed method achieves good performance on the ScanNet dataset and Paris-Lille-3D dataset.
arXiv Detail & Related papers (2020-11-27T15:35:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.