Multi-modal expressive personality recognition in data non-ideal audiovisual based on multi-scale feature enhancement and modal augment
- URL: http://arxiv.org/abs/2503.06108v1
- Date: Sat, 08 Mar 2025 07:20:44 GMT
- Title: Multi-modal expressive personality recognition in data non-ideal audiovisual based on multi-scale feature enhancement and modal augment
- Authors: Weixuan Kong, Jinpeng Yu, Zijun Li, Hanwei Liu, Jiqing Qu, Hui Xiao, Xuefeng Li,
- Abstract summary: An end-to-end multimodal performance personality is established for both visual and auditory modal datarecognition network.<n>A is proposed multiscale feature enhancement modalities module.<n>During the training process, this paper proposes a modal enhancement training strategy to simulate non-ideal data scenarios.
- Score: 10.157685076725791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic personality recognition is a research hotspot in the intersection of computer science and psychology, and in human-computer interaction, personalised has a wide range of applications services and other scenarios. In this paper, an end-to-end multimodal performance personality is established for both visual and auditory modal datarecognition network , and the through feature-level fusion , which effectively of the two modalities is carried out the cross-attention mechanismfuses the features of the two modal data; and a is proposed multiscale feature enhancement modalitiesmodule , which enhances for visual and auditory boththe expression of the information of effective the features and suppresses the interference of the redundant information. In addition, during the training process, this paper proposes a modal enhancement training strategy to simulate non-ideal such as modal loss and noise interferencedata situations , which enhances the adaptability ofand the model to non-ideal data scenarios improves the robustness of the model. Experimental results show that the method proposed in this paper is able to achieve an average Big Five personality accuracy of , which outperforms existing 0.916 on the personality analysis dataset ChaLearn First Impressionother methods based on audiovisual and audio-visual both modalities. The ablation experiments also validate our proposed , respectivelythe contribution of module and modality enhancement strategy to the model performance. Finally, we simulate in the inference phase multi-scale feature enhancement six non-ideal data scenarios to verify the modal enhancement strategy's improvement in model robustness.
Related papers
- AVadCLIP: Audio-Visual Collaboration for Robust Video Anomaly Detection [57.649223695021114]
We present a novel weakly supervised framework that leverages audio-visual collaboration for robust video anomaly detection.
Our framework demonstrates superior performance across multiple benchmarks, with audio integration significantly boosting anomaly detection accuracy.
arXiv Detail & Related papers (2025-04-06T13:59:16Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - Pre-training Feature Guided Diffusion Model for Speech Enhancement [37.88469730135598]
Speech enhancement significantly improves the clarity and intelligibility of speech in noisy environments.
We introduce a novel pretraining feature-guided diffusion model tailored for efficient speech enhancement.
arXiv Detail & Related papers (2024-06-11T18:22:59Z) - Robust Latent Representation Tuning for Image-text Classification [9.789498730131607]
We propose a robust latent representation tuning method for large models.
Our approach introduces a modality latent translation module to maximize the correlation between modalities, resulting in a robust representation.
Within this framework, common semantics are refined during training, and robust performance is achieved even in the absence of one modality.
arXiv Detail & Related papers (2024-06-10T06:29:00Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
Multimodal emotion recognition (MMER) systems typically outperform unimodal systems.
This paper proposes an MMER method that relies on a joint multimodal transformer (JMT) for fusion with key-based cross-attention.
arXiv Detail & Related papers (2024-03-15T17:23:38Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - CMMD: Contrastive Multi-Modal Diffusion for Video-Audio Conditional Modeling [21.380988939240844]
We introduce a multi-modal diffusion model tailored for the bi-directional conditional generation of video and audio.
We propose a joint contrastive training loss to improve the synchronization between visual and auditory occurrences.
arXiv Detail & Related papers (2023-12-08T23:55:19Z) - What Makes for Robust Multi-Modal Models in the Face of Missing
Modalities? [35.19295402483624]
We model the scenarios of multi-modal models encountering missing modalities from an information-theoretic perspective.
We introduce Uni-Modal Ensemble with Missing Modality Adaptation (UME-MMA)
UME-MMA employs uni-modal pre-trained weights for the multi-modal model to enhance feature extraction and utilizes missing modality data augmentation techniques to better adapt to situations with missing modalities.
arXiv Detail & Related papers (2023-10-10T07:47:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Multimodal Contrastive Learning via Uni-Modal Coding and Cross-Modal
Prediction for Multimodal Sentiment Analysis [19.07020276666615]
We propose a novel framework named MultiModal Contrastive Learning (MMCL) for multimodal representation to capture intra- and inter-modality dynamics simultaneously.
We also design two contrastive learning tasks, instance- and sentiment-based contrastive learning, to promote the process of prediction and learn more interactive information related to sentiment.
arXiv Detail & Related papers (2022-10-26T08:24:15Z) - Self-attention fusion for audiovisual emotion recognition with
incomplete data [103.70855797025689]
We consider the problem of multimodal data analysis with a use case of audiovisual emotion recognition.
We propose an architecture capable of learning from raw data and describe three variants of it with distinct modality fusion mechanisms.
arXiv Detail & Related papers (2022-01-26T18:04:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.