Exploring the usage of Probabilistic Neural Networks for Ionospheric electron density estimation
- URL: http://arxiv.org/abs/2503.06144v1
- Date: Sat, 08 Mar 2025 10:06:15 GMT
- Title: Exploring the usage of Probabilistic Neural Networks for Ionospheric electron density estimation
- Authors: Miquel Garcia-Fernandez,
- Abstract summary: This paper explores a potential framework capable of providing both point estimates and associated uncertainty measures of ionospheric Vertical Total Electron Content (VTEC)<n>A key finding of this study is that the uncertainty provided by the PNN model in VTEC estimates may be systematically underestimated.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A fundamental limitation of traditional Neural Networks (NN) in predictive modelling is their inability to quantify uncertainty in their outputs. In critical applications like positioning systems, understanding the reliability of predictions is critical for constructing confidence intervals, early warning systems, and effectively propagating results. For instance, Precise Point Positioning in satellite navigation heavily relies on accurate error models for ancillary data (orbits, clocks, ionosphere, and troposphere) to compute precise error estimates. In addition, these uncertainty estimates are needed to establish robust protection levels in safety critical applications. To address this challenge, the main objectives of this paper aims at exploring a potential framework capable of providing both point estimates and associated uncertainty measures of ionospheric Vertical Total Electron Content (VTEC). In this context, Probabilistic Neural Networks (PNNs) offer a promising approach to achieve this goal. However, constructing an effective PNN requires meticulous design of hidden and output layers, as well as careful definition of prior and posterior probability distributions for network weights and biases. A key finding of this study is that the uncertainty provided by the PNN model in VTEC estimates may be systematically underestimated. In low-latitude areas, the actual error was observed to be as much as twice the model's estimate. This underestimation is expected to be more pronounced during solar maximum, correlating with increased VTEC values.
Related papers
- Quantifying calibration error in modern neural networks through evidence based theory [0.0]
This paper introduces a novel framework for quantifying the trustworthiness of neural networks by incorporating subjective logic into the evaluation of Expected Error (ECE)
We demonstrate the effectiveness of this approach through experiments on MNIST and CIFAR-10 datasets where post-calibration results indicate improved trustworthiness.
The proposed framework offers a more interpretable and nuanced assessment of AI models, with potential applications in sensitive domains such as healthcare and autonomous systems.
arXiv Detail & Related papers (2024-10-31T23:54:21Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
This paper presents preliminary results on uncertainty quantification for system identification with neural state-space models.
We frame the learning problem in a Bayesian probabilistic setting and obtain posterior distributions for the neural network's weights and outputs.
Based on the posterior, we construct credible intervals on the outputs and define a surprise index which can effectively diagnose usage of the model in a potentially dangerous out-of-distribution regime.
arXiv Detail & Related papers (2023-04-13T08:57:33Z) - Dual Accuracy-Quality-Driven Neural Network for Prediction Interval Generation [0.0]
We present a method to learn prediction intervals for regression-based neural networks automatically.
Our main contribution is the design of a novel loss function for the PI-generation network.
Experiments using a synthetic dataset, eight benchmark datasets, and a real-world crop yield prediction dataset showed that our method was able to maintain a nominal probability coverage.
arXiv Detail & Related papers (2022-12-13T05:03:16Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing
Platforms [10.86298377998459]
We propose an efficient framework for predictive uncertainty estimation in NNs deployed on embedded edge systems.
The framework is built from the ground up to provide predictive uncertainty based only on one forward pass.
Our approach not only obtains robust and accurate uncertainty estimations but also outperforms state-of-the-art methods in terms of systems performance.
arXiv Detail & Related papers (2021-02-11T11:44:32Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Probabilistic Neighbourhood Component Analysis: Sample Efficient
Uncertainty Estimation in Deep Learning [25.8227937350516]
We show that uncertainty estimation capability of state-of-the-art BNNs and Deep Ensemble models degrades significantly when the amount of training data is small.
We propose a probabilistic generalization of the popular sample-efficient non-parametric kNN approach.
Our approach enables deep kNN to accurately quantify underlying uncertainties in its prediction.
arXiv Detail & Related papers (2020-07-18T21:36:31Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.