Optimal Output Feedback Learning Control for Discrete-Time Linear Quadratic Regulation
- URL: http://arxiv.org/abs/2503.06226v2
- Date: Tue, 11 Mar 2025 18:32:36 GMT
- Title: Optimal Output Feedback Learning Control for Discrete-Time Linear Quadratic Regulation
- Authors: Kedi Xie, Martin Guay, Shimin Wang, Fang Deng, Maobin Lu,
- Abstract summary: We study the linear quadratic regulation problem of unknown discrete-time systems via dynamic output feedback learning control.<n>In contrast to the state feedback, the optimality of the dynamic output feedback control for solving the LQR problem requires an implicit condition on the convergence of the state observer.<n>We propose a generalized dynamic output feedback learning control approach with guaranteed convergence, stability, and optimality performance.
- Score: 3.885549098032255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the linear quadratic regulation (LQR) problem of unknown discrete-time systems via dynamic output feedback learning control. In contrast to the state feedback, the optimality of the dynamic output feedback control for solving the LQR problem requires an implicit condition on the convergence of the state observer. Moreover, due to unknown system matrices and the existence of observer error, it is difficult to analyze the convergence and stability of most existing output feedback learning-based control methods. To tackle these issues, we propose a generalized dynamic output feedback learning control approach with guaranteed convergence, stability, and optimality performance for solving the LQR problem of unknown discrete-time linear systems. In particular, a dynamic output feedback controller is designed to be equivalent to a state feedback controller. This equivalence relationship is an inherent property without requiring convergence of the estimated state by the state observer, which plays a key role in establishing the off-policy learning control approaches. By value iteration and policy iteration schemes, the adaptive dynamic programming based learning control approaches are developed to estimate the optimal feedback control gain. In addition, a model-free stability criterion is provided by finding a nonsingular parameterization matrix, which contributes to establishing a switched iteration scheme. Furthermore, the convergence, stability, and optimality analyses of the proposed output feedback learning control approaches are given. Finally, the theoretical results are validated by two numerical examples.
Related papers
- Stable Inverse Reinforcement Learning: Policies from Control Lyapunov Landscapes [4.229902091180109]
We propose a novel, stability-certified IRL approach to learning control Lyapunov functions from demonstrations data.
By exploiting closed-form expressions for associated control policies, we are able to efficiently search the space of CLFs.
We present a theoretical analysis of the optimality properties provided by the CLF and evaluate our approach using both simulated and real-world data.
arXiv Detail & Related papers (2024-05-14T16:40:45Z) - Unifying Controller Design for Stabilizing Nonlinear Systems with
Norm-Bounded Control Inputs [8.573073817861973]
This paper revisits a challenge in the design of stabilizing controllers for nonlinear systems with a norm-bounded input constraint.
By extending Lin-Sontag's universal formula and introducing a generic (state-dependent) scaling term, a unifying controller design method is proposed.
arXiv Detail & Related papers (2024-03-05T15:06:16Z) - Incorporating Recurrent Reinforcement Learning into Model Predictive
Control for Adaptive Control in Autonomous Driving [11.67417895998434]
Model Predictive Control (MPC) is attracting tremendous attention in the autonomous driving task as a powerful control technique.
In this paper, we reformulate the problem as a Partially Observed Markov Decision Process (POMDP)
We then learn a recurrent policy continually adapting the parameters of the dynamics model via Recurrent Reinforcement Learning (RRL) for optimal and adaptive control.
arXiv Detail & Related papers (2023-01-30T22:11:07Z) - On the Optimization Landscape of Dynamic Output Feedback: A Case Study
for Linear Quadratic Regulator [12.255864026960403]
We show how the dLQR cost varies with the coordinate transformation of the dynamic controller and then derive the optimal transformation for a given observable stabilizing controller.
These results shed light on designing efficient algorithms for general decision-making problems with partially observed information.
arXiv Detail & Related papers (2022-09-12T06:43:35Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Robust Value Iteration for Continuous Control Tasks [99.00362538261972]
When transferring a control policy from simulation to a physical system, the policy needs to be robust to variations in the dynamics to perform well.
We present Robust Fitted Value Iteration, which uses dynamic programming to compute the optimal value function on the compact state domain.
We show that robust value is more robust compared to deep reinforcement learning algorithm and the non-robust version of the algorithm.
arXiv Detail & Related papers (2021-05-25T19:48:35Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.