Integrating Chain-of-Thought for Multimodal Alignment: A Study on 3D Vision-Language Learning
- URL: http://arxiv.org/abs/2503.06232v2
- Date: Sat, 15 Mar 2025 09:59:54 GMT
- Title: Integrating Chain-of-Thought for Multimodal Alignment: A Study on 3D Vision-Language Learning
- Authors: Yanjun Chen, Yirong Sun, Xinghao Chen, Jian Wang, Xiaoyu Shen, Wenjie Li, Wei Zhang,
- Abstract summary: Chain-of-Thought (CoT) reasoning has proven effective in natural language tasks but remains underexplored in multimodal alignment.<n>This study investigates its integration into 3D vision-hugging learning by embedding structured reasoning into alignment training.
- Score: 20.562109430526007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chain-of-Thought (CoT) reasoning has proven effective in natural language tasks but remains underexplored in multimodal alignment. This study investigates its integration into 3D vision-language learning by embedding structured reasoning into alignment training. We introduce the 3D-CoT Benchmark, a dataset with hierarchical CoT annotations covering shape recognition, functional inference, and causal reasoning. Through controlled experiments, we compare CoT-structured and standard textual annotations across large reasoning models (LRMs) and large language models (LLMs). Our evaluation employs a dual-layer framework assessing both intermediate reasoning and final inference quality. Extensive experiments demonstrate that CoT significantly improves 3D semantic grounding, with LRMs leveraging CoT more effectively than LLMs. Furthermore, we highlight that annotation structure influences performance-explicit reasoning markers aid LLMs, while unmarked CoT better aligns with LRM inference patterns. Our analyses suggest that CoT is crucial for enhancing multimodal reasoning, with implications beyond 3D tasks. The dataset will be publicly available at https://huggingface.co/datasets/Battam/3D-CoT
Related papers
- CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models [14.784841713647682]
CoT-RAG is a novel reasoning framework with three key designs.
It features Knowledge Graph-driven CoT Generation, Learnable Knowledge Case-aware RAG, and Pseudo-Program Prompting Execution.
Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%.
arXiv Detail & Related papers (2025-04-18T07:55:09Z) - Retrieval-Based Interleaved Visual Chain-of-Thought in Real-World Driving Scenarios [69.00444996464662]
We propose RIV-CoT, a Retrieval-Based Interleaved Visual Chain-of-Thought method that enables vision-language models to reason using visual crops corresponding to relevant entities.
Our experiments demonstrate that RIV-CoT improves answer accuracy by 3.1% and reasoning accuracy by 4.6% over vanilla CoT prompting.
arXiv Detail & Related papers (2025-01-08T18:31:16Z) - Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
We formalize Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) through an information-theoretic lens.
Specifically, our framework quantifies the information gain' at each reasoning step, enabling the identification of failure modes.
We demonstrate the efficacy of our approach through extensive experiments on toy and GSM-8K data, where it significantly outperforms existing outcome-based methods.
arXiv Detail & Related papers (2024-11-18T19:14:36Z) - CoT-ST: Enhancing LLM-based Speech Translation with Multimodal Chain-of-Thought [33.32415197728357]
Speech Language Models (SLMs) have demonstrated impressive performance on speech translation tasks.
We introduce a three-stage training framework designed to activate the chain-of-thought capabilities of SLMs.
We propose CoT-ST, a speech translation model that utilizes multimodal CoT to decompose speech translation into sequential steps of speech recognition and translation.
arXiv Detail & Related papers (2024-09-29T01:48:09Z) - Leveraging Large Language Models with Chain-of-Thought and Prompt Engineering for Traffic Crash Severity Analysis and Inference [24.565253576049024]
This study explores the use of three state-of-the-art Large Language Models (LLMs) for crash severity inference.
We generate textual narratives from original traffic crash data using a pre-built template infused with domain knowledge.
We incorporated Chain-of-Thought (CoT) reasoning to guide the LLMs in analyzing the crash causes and then inferring the severity.
arXiv Detail & Related papers (2024-08-04T17:14:10Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - ERA-CoT: Improving Chain-of-Thought through Entity Relationship Analysis [20.24915029448926]
Large language models (LLMs) have achieved commendable accomplishments in various natural language processing tasks.
These challenges arise from the presence of implicit relationships that demand multi-step reasoning.
We propose a novel approach ERA-CoT, which aids LLMs in understanding context by capturing relationships between entities.
arXiv Detail & Related papers (2024-03-11T17:18:53Z) - Stress Testing Chain-of-Thought Prompting for Large Language Models [0.16317061277456998]
This report examines the effectiveness of Chain-of-Thought (CoT) prompting in improving the multi-step reasoning abilities of large language models (LLMs)
We analyze the impact of three types of CoT prompt perturbations, namely CoT order, CoT values, and CoT operators on the performance of GPT-3 on various tasks.
arXiv Detail & Related papers (2023-09-28T17:21:33Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
In this paper, we make the first attempt to investigate the feasibility of incorporating logical knowledge through self-supervised post-training.
We devise an auto-regressive objective variant of MERIt and integrate it with two LLM series, i.e., FLAN-T5 and LLaMA, with parameter size ranging from 3 billion to 13 billion.
The results on two challenging logical reasoning benchmarks demonstrate the effectiveness of LogicLLM.
arXiv Detail & Related papers (2023-05-23T06:13:10Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z) - Multimodal Chain-of-Thought Reasoning in Language Models [94.70184390935661]
We propose Multimodal-CoT that incorporates language (text) and vision (images) modalities into a two-stage framework.
Experimental results on ScienceQA and A-OKVQA benchmark datasets show the effectiveness of our proposed approach.
arXiv Detail & Related papers (2023-02-02T07:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.