Retrieval-Based Interleaved Visual Chain-of-Thought in Real-World Driving Scenarios
- URL: http://arxiv.org/abs/2501.04671v2
- Date: Tue, 08 Apr 2025 17:09:59 GMT
- Title: Retrieval-Based Interleaved Visual Chain-of-Thought in Real-World Driving Scenarios
- Authors: Charles Corbière, Simon Roburin, Syrielle Montariol, Antoine Bosselut, Alexandre Alahi,
- Abstract summary: We propose RIV-CoT, a Retrieval-Based Interleaved Visual Chain-of-Thought method that enables vision-language models to reason using visual crops corresponding to relevant entities.<n>Our experiments demonstrate that RIV-CoT improves answer accuracy by 3.1% and reasoning accuracy by 4.6% over vanilla CoT prompting.
- Score: 69.00444996464662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While chain-of-thought (CoT) prompting improves reasoning in large language models, its effectiveness in vision-language models (VLMs) remains limited due to over-reliance on textual cues and memorized knowledge. To investigate the visual reasoning capabilities of VLMs in complex real-world scenarios, we introduce DrivingVQA, a visual question answering dataset derived from driving theory exams, which contains 3,931 multiple-choice problems with expert-written explanations and grounded entities relevant to the reasoning process. Leveraging this dataset, we propose RIV-CoT, a Retrieval-Based Interleaved Visual Chain-of-Thought method that enables VLMs to reason using visual crops corresponding to these relevant entities. Our experiments demonstrate that RIV-CoT improves answer accuracy by 3.1% and reasoning accuracy by 4.6% over vanilla CoT prompting. Furthermore, we demonstrate that our method effectively scales to the larger A-OKVQA reasoning dataset by leveraging automatically generated pseudo-labels, outperforming CoT prompting.
Related papers
- Unsupervised Visual Chain-of-Thought Reasoning via Preference Optimization [69.29207684569695]
Chain-of-thought (CoT) reasoning greatly improves the interpretability and problem-solving abilities of multimodal large language models (MLLMs)
Existing approaches are focused on text CoT, limiting their ability to leverage visual cues.
In this paper, we introduce Unsupervised Visual CoT (UV-CoT), a novel framework for image-level CoT reasoning via preference optimization.
arXiv Detail & Related papers (2025-04-25T14:48:18Z) - CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models [14.784841713647682]
CoT-RAG is a novel reasoning framework with three key designs.
It features Knowledge Graph-driven CoT Generation, Learnable Knowledge Case-aware RAG, and Pseudo-Program Prompting Execution.
Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%.
arXiv Detail & Related papers (2025-04-18T07:55:09Z) - Vision-Language Models Can Self-Improve Reasoning via Reflection [20.196406628954303]
Chain-of-thought (CoT) has proven to improve the reasoning capability of large language models (LLMs)
We propose a self-training framework, R3V, which iteratively enhances the model's Vision-language Reasoning by Reflecting on CoT Rationales.
Our approach supports self-reflection on generated solutions, further boosting performance through test-time computation.
arXiv Detail & Related papers (2024-10-30T14:45:00Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z) - ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom [42.03770972100087]
We introduce a novel visual reasoning framework named ProReason.
ProReason features multi-run proactive perception and decoupled vision-reasoning capabilities.
Our experiments demonstrate that ProReason outperforms both existing multi-step reasoning frameworks and passive peer methods.
arXiv Detail & Related papers (2024-10-18T03:22:06Z) - Do Vision-Language Models Really Understand Visual Language? [43.893398898373995]
Diagrams are a typical example of a visual language depicting complex concepts and their relationships in the form of an image.
Recent studies suggest that Large Vision-Language Models (LVLMs) can even tackle complex reasoning tasks involving diagrams.
This paper develops a comprehensive test suite to evaluate the diagram comprehension capability of LVLMs.
arXiv Detail & Related papers (2024-09-30T19:45:11Z) - Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
Recent advancements in Vision-Language (VL) research have sparked new benchmarks for complex visual reasoning.
We propose Complex Visual Reasoning Large Language Models (CVR-LLM)
Our approach transforms images into detailed, context-aware descriptions using an iterative self-refinement loop.
We also introduce a novel multi-modal in-context learning (ICL) methodology to enhance LLMs' contextual understanding and reasoning.
arXiv Detail & Related papers (2024-09-21T02:10:19Z) - Zero-Shot Visual Reasoning by Vision-Language Models: Benchmarking and Analysis [6.704529554100875]
Vision-language models (VLMs) have shown impressive zero- and few-shot performance on real-world visual question answering benchmarks.
It remains unclear whether a VLM's apparent visual reasoning performance is due to its world knowledge, or due to actual visual reasoning capabilities.
arXiv Detail & Related papers (2024-08-27T14:43:54Z) - Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images [19.923665989164387]
We propose a novel Multimodal Causal Reasoning benchmark, namely MuCR, to challenge Large Language Models.
Specifically, we introduce a prompt-driven image synthesis approach to create siamese images with embedded semantic causality and visual cues.
Our extensive experiments reveal that the current state-of-the-art VLLMs are not as skilled at multimodal causal reasoning as we might have hoped.
arXiv Detail & Related papers (2024-08-15T12:04:32Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.
The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.
We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - Silkie: Preference Distillation for Large Visual Language Models [56.10697821410489]
This paper explores preference distillation for large vision language models (LVLMs)
We first build a vision-language feedback dataset utilizing AI annotation.
We adopt GPT-4V to assess the generated outputs regarding helpfulness, visual faithfulness, and ethical considerations.
The resulting model Silkie, achieves 6.9% and 9.5% relative improvement on the MME benchmark regarding the perception and cognition capabilities.
arXiv Detail & Related papers (2023-12-17T09:44:27Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
Question-Driven Visual Exploration (QVix) is a novel prompting strategy that enhances the exploratory capabilities of large vision-language models (LVLMs)
QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment.
Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-04T03:18:51Z) - Rephrase, Augment, Reason: Visual Grounding of Questions for Vision-Language Models [59.05769810380928]
Rephrase, Augment and Reason (RepARe) is a gradient-free framework that extracts salient details about the image using the underlying vision-language model.
We show that RepARe can result in a 3.85% (absolute) increase in zero-shot accuracy on VQAv2, 6.41%, and 7.94% points increase on A-OKVQA, and VizWiz respectively.
arXiv Detail & Related papers (2023-10-09T16:57:57Z) - Investigating the Efficacy of Large Language Models in Reflective
Assessment Methods through Chain of Thoughts Prompting [0.2552922646705803]
Chain of Thought(CoT) prompting method has been proposed as a means to enhance LLMs' proficiency in complex reasoning tasks.
The primary aim of this research is to assess how well four language models can grade reflective essays of third-year medical students.
arXiv Detail & Related papers (2023-09-30T06:25:27Z) - Visual Chain of Thought: Bridging Logical Gaps with Multimodal
Infillings [61.04460792203266]
We introduce VCoT, a novel method that leverages chain-of-thought prompting with vision-language grounding to bridge the logical gaps within sequential data.
Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks.
arXiv Detail & Related papers (2023-05-03T17:58:29Z) - See, Think, Confirm: Interactive Prompting Between Vision and Language
Models for Knowledge-based Visual Reasoning [60.43585179885355]
We propose a novel framework named Interactive Prompting Visual Reasoner (IPVR) for few-shot knowledge-based visual reasoning.
IPVR contains three stages, see, think and confirm.
We conduct experiments on a range of knowledge-based visual reasoning datasets.
arXiv Detail & Related papers (2023-01-12T18:59:50Z) - Breakpoint Transformers for Modeling and Tracking Intermediate Beliefs [37.754787051387034]
We propose a representation learning framework called breakpoint modeling.
Our approach trains models in an efficient and end-to-end fashion to build intermediate representations.
We show the benefit of our main breakpoint transformer, based on T5, over conventional representation learning approaches.
arXiv Detail & Related papers (2022-11-15T07:28:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.