Single Domain Generalization with Adversarial Memory
- URL: http://arxiv.org/abs/2503.06288v1
- Date: Sat, 08 Mar 2025 17:27:42 GMT
- Title: Single Domain Generalization with Adversarial Memory
- Authors: Hao Yan, Marzi Heidari, Yuhong Guo,
- Abstract summary: Domain Generalization (DG) aims to train models that can generalize to unseen testing domains by leveraging data from multiple training domains.<n>Traditional DG methods rely on the availability of multiple diverse training domains, limiting their applicability in data-constrained scenarios.<n>We propose a single domain generalization method that leverages an adversarial memory bank to augment training features.
- Score: 28.55618508655301
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain Generalization (DG) aims to train models that can generalize to unseen testing domains by leveraging data from multiple training domains. However, traditional DG methods rely on the availability of multiple diverse training domains, limiting their applicability in data-constrained scenarios. Single Domain Generalization (SDG) addresses the more realistic and challenging setting by restricting the training data to a single domain distribution. The main challenges in SDG stem from the limited diversity of training data and the inaccessibility of unseen testing data distributions. To tackle these challenges, we propose a single domain generalization method that leverages an adversarial memory bank to augment training features. Our memory-based feature augmentation network maps both training and testing features into an invariant subspace spanned by diverse memory features, implicitly aligning the training and testing domains in the projected space. To maintain a diverse and representative feature memory bank, we introduce an adversarial feature generation method that creates features extending beyond the training domain distribution. Experimental results demonstrate that our approach achieves state-of-the-art performance on standard single domain generalization benchmarks.
Related papers
- What's in a Latent? Leveraging Diffusion Latent Space for Domain Generalization [10.079844840768054]
Domain Generalization aims to develop models that can generalize to novel and unseen data distributions.<n>We study how model architectures and pre-training objectives impact feature richness.<n>Our framework improves generalization to unseen domains by a maximum test accuracy improvement of over 4%.
arXiv Detail & Related papers (2025-03-09T17:29:01Z) - Commute Your Domains: Trajectory Optimality Criterion for Multi-Domain Learning [50.80758278865274]
In multi-domain learning, a single model is trained on diverse data domains to leverage shared knowledge and improve generalization.<n>The order in which the data from these domains is used for training can significantly affect the model's performance on each domain.<n>We investigate the influence of training order (or data mixing) in multi-domain learning using the concept of Lie bracket of gradient vector fields.
arXiv Detail & Related papers (2025-01-26T15:12:06Z) - DIGIC: Domain Generalizable Imitation Learning by Causal Discovery [69.13526582209165]
Causality has been combined with machine learning to produce robust representations for domain generalization.
We make a different attempt by leveraging the demonstration data distribution to discover causal features for a domain generalizable policy.
We design a novel framework, called DIGIC, to identify the causal features by finding the direct cause of the expert action from the demonstration data distribution.
arXiv Detail & Related papers (2024-02-29T07:09:01Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
Single domain generalization aims to enhance the ability of the model to generalize to unknown domains when trained on a single source domain.
The limited diversity in the training data hampers the learning of domain-invariant features, resulting in compromised generalization performance.
We propose CPerb, a simple yet effective cross-perturbation method to enhance the diversity of the training data.
arXiv Detail & Related papers (2023-08-02T03:16:12Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
We propose a simple yet effective method called NormAUG (Normalization-guided Augmentation) for deep learning.
Our method introduces diverse information at the feature level and improves the generalization of the main path.
In the test stage, we leverage an ensemble strategy to combine the predictions from the auxiliary path of our model, further boosting performance.
arXiv Detail & Related papers (2023-07-25T13:35:45Z) - Gated Domain Units for Multi-source Domain Generalization [14.643490853965385]
Distribution shift (DS) occurs when a dataset at test time differs from the dataset at training time.
We introduce a modular neural network layer consisting of Gated Domain Units (GDUs) that learn a representation for each latent elementary distribution.
During inference, a weighted ensemble of learning machines can be created by comparing new observations with the representations of each elementary distribution.
arXiv Detail & Related papers (2022-06-24T18:12:38Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
Domain-Free Domain Generalization (DFDG) is a model-agnostic method to achieve better generalization performance on the unseen test domain.
DFDG uses novel strategies to learn domain-invariant class-discriminative features.
It obtains competitive performance on both time series sensor and image classification public datasets.
arXiv Detail & Related papers (2021-02-17T17:46:06Z) - Batch Normalization Embeddings for Deep Domain Generalization [50.51405390150066]
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains.
We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks.
arXiv Detail & Related papers (2020-11-25T12:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.