論文の概要: Privacy Protection in Prosumer Energy Management Based on Federated Learning
- arxiv url: http://arxiv.org/abs/2503.06455v1
- Date: Sun, 09 Mar 2025 05:29:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:49.600086
- Title: Privacy Protection in Prosumer Energy Management Based on Federated Learning
- Title(参考訳): フェデレーションラーニングに基づく消費者エネルギー管理におけるプライバシ保護
- Authors: Yunfeng Li, Xiaolin Li Zhitao Li, Gangqiang Li,
- Abstract要約: プロシューマーの情報は プライバシーを明かさずに システムのインテリジェントな意思決定に 効率的に参加できる
非IIDの場合のモデルの精度はクラスタリングとパラメータ重み付け平均によって向上する。
ローカルな多重イテレーションと3層フレームワークは、通信ラウンドを効果的に削減できる。
- 参考スコア(独自算出の注目度): 0.6963971634605796
- License:
- Abstract: With the booming development of prosumers, there is an urgent need for a prosumer energy management system to take full advantage of the flexibility of prosumers and take into account the interests of other parties. However, building such a system will undoubtedly reveal users' privacy. In this paper, by solving the non-independent and identical distribution of data (Non-IID) problem in federated learning with federated cluster average(FedClusAvg) algorithm, prosumers' information can efficiently participate in the intelligent decision making of the system without revealing privacy. In the proposed FedClusAvg algorithm, each client performs cluster stratified sampling and multiple iterations. Then, the average weight of the parameters of the sub-server is determined according to the degree of deviation of the parameter from the average parameter. Finally, the sub-server multiple local iterations and updates, and then upload to the main server. The advantages of FedClusAvg algorithm are the following two parts. First, the accuracy of the model in the case of Non-IID is improved through the method of clustering and parameter weighted average. Second, local multiple iterations and three-tier framework can effectively reduce communication rounds.
- Abstract(参考訳): 消費者の興隆に伴い、消費者の柔軟性を最大限に活用し、他者の利益を考慮し、消費者のエネルギー管理体制の整備が急務となる。
しかし、そのようなシステムを構築することで、ユーザのプライバシが明らかになることは間違いない。
本稿では,フェデレートクラスタ平均(FedClusAvg)アルゴリズムを用いて,フェデレーション学習におけるデータ(Non-IID)の非独立分布と同一分布を解くことにより,プライバシを明らかにすることなく,プロサの情報を効率よくシステムの知的意思決定に参加させることができる。
提案したFedClusAvgアルゴリズムでは,各クライアントがクラスタ階層化サンプリングと複数イテレーションを行う。
そして、パラメータの偏差度に応じて、サブサーバのパラメータの平均重量を決定する。
最後に、サブサーバは複数のローカルイテレーションと更新を行い、メインサーバにアップロードする。
FedClusAvgアルゴリズムの利点は以下の2つである。
まず,非IIDの場合のモデルの精度をクラスタリング法とパラメータ重み付き平均値を用いて改善する。
第二に、ローカルな多重イテレーションと3層フレームワークは、通信ラウンドを効果的に削減できる。
関連論文リスト
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
本稿では,Catalytics Accelerationを導入し,DFedCataと呼ばれる促進型分散フェデレート学習アルゴリズムを提案する。
DFedCataは、パラメータの不整合に対処するMoreauエンベロープ関数と、アグリゲーションフェーズを加速するNesterovの外挿ステップの2つの主要コンポーネントで構成されている。
実験により, CIFAR10/100における収束速度と一般化性能の両面において, 提案アルゴリズムの利点を実証した。
論文 参考訳(メタデータ) (2024-10-09T06:17:16Z) - Federated Automatic Latent Variable Selection in Multi-output Gaussian Processes [0.7366405857677227]
ユニット間で知識を伝達するMGPの一般的なアプローチは、各ユニットから中央サーバーへのすべてのデータ収集である。
本稿では,各潜伏過程の係数にスパイク・アンド・スラブ先行を配置する階層モデルを提案する。
これらの先行は、不要なものの係数を0に縮めることで、必要な潜在プロセスのみを自動的に選択するのに役立つ。
論文 参考訳(メタデータ) (2024-07-24T02:03:28Z) - Differentially Private Clustered Federated Learning [4.768272342753616]
フェデレートラーニング(FL)は、厳格なデータプライバシ保証を提供するために、しばしば差分プライバシ(DP)を取り入れる。
以前の研究は、クラスタリングクライアント(クラスタ化FL)を介してバニラFL設定における高構造データ不均一性に対処しようとした。
システム内のDPノイズに対して頑健で,基盤となるクライアントのクラスタを正しく識別する,差分プライベートクラスタリングFLのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:03:31Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
クライアント間の非IIDデータ分散と中毒攻撃は、現実世界のフェデレーション学習システムにおける2つの大きな課題である。
サーバ側集約プロセスを最適化する汎用的なアプローチであるSmartFLを提案する。
本稿では,SmartFLの収束と一般化能力に関する理論的解析を行う。
論文 参考訳(メタデータ) (2022-11-10T13:20:56Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
クラスタ学習は、クライアントをクラスタにグループ化することで、有望な結果をもたらすことが示されている。
既存のFLアルゴリズムは基本的に、クライアントを同様のディストリビューションでグループ化しようとしている。
以前のFLアルゴリズムは、訓練中に間接的に類似性を試みていた。
論文 参考訳(メタデータ) (2022-09-21T17:37:54Z) - Differentially Private Vertical Federated Clustering [13.27934054846057]
多くのアプリケーションでは、複数のパーティが同じユーザのセットに関するプライベートデータを持っているが、非結合な属性のセットについてである。
データ対象者のプライバシーを保護しながらモデル学習を可能にするためには、垂直連合学習(VFL)技術が必要である。
本論文で提案するアルゴリズムは, 個人用垂直結合型K平均クラスタリングのための最初の実用的な解法である。
論文 参考訳(メタデータ) (2022-08-02T19:23:48Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。