Reconstructing Depth Images of Moving Objects from Wi-Fi CSI Data
- URL: http://arxiv.org/abs/2503.06458v1
- Date: Sun, 09 Mar 2025 05:30:33 GMT
- Title: Reconstructing Depth Images of Moving Objects from Wi-Fi CSI Data
- Authors: Guanyu Cao, Takuya Maekawa, Kazuya Ohara, Yasue Kishino,
- Abstract summary: This study proposes a new deep learning method for reconstructing depth images of moving objects within a specific area using Wi-Fi channel state information (CSI)<n>The Wi-Fi-based depth imaging technique has novel applications in domains such as security and elder care.
- Score: 0.6168521568443759
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a new deep learning method for reconstructing depth images of moving objects within a specific area using Wi-Fi channel state information (CSI). The Wi-Fi-based depth imaging technique has novel applications in domains such as security and elder care. However, reconstructing depth images from CSI is challenging because learning the mapping function between CSI and depth images, both of which are high-dimensional data, is particularly difficult. To address the challenge, we propose a new approach called Wi-Depth. The main idea behind the design of Wi-Depth is that a depth image of a moving object can be decomposed into three core components: the shape, depth, and position of the target. Therefore, in the depth-image reconstruction task, Wi-Depth simultaneously estimates the three core pieces of information as auxiliary tasks in our proposed VAE-based teacher-student architecture, enabling it to output images with the consistency of a correct shape, depth, and position. In addition, the design of Wi-Depth is based on our idea that this decomposition efficiently takes advantage of the fact that shape, depth, and position relate to primitive information inferred from CSI such as angle-of-arrival, time-of-flight, and Doppler frequency shift.
Related papers
- Depth-guided Texture Diffusion for Image Semantic Segmentation [47.46257473475867]
We introduce a Depth-guided Texture Diffusion approach that effectively tackles the outlined challenge.
Our method extracts low-level features from edges and textures to create a texture image.
By integrating this enriched depth map with the original RGB image into a joint feature embedding, our method effectively bridges the disparity between the depth map and the image.
arXiv Detail & Related papers (2024-08-17T04:55:03Z) - OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection [102.0744303467713]
We propose a new multi-view 3D object detector named OPEN.
Our main idea is to effectively inject object-wise depth information into the network through our proposed object-wise position embedding.
OPEN achieves a new state-of-the-art performance with 64.4% NDS and 56.7% mAP on the nuScenes test benchmark.
arXiv Detail & Related papers (2024-07-15T14:29:15Z) - RigNet++: Semantic Assisted Repetitive Image Guided Network for Depth
Completion [31.70022495622075]
We explore a repetitive design in our image guided network to gradually and sufficiently recover depth values.
In the former branch, we design a dense repetitive hourglass network (DRHN) to extract discriminative image features of complex environments.
In the latter branch, we present a repetitive guidance (RG) module based on dynamic convolution, in which an efficient convolution factorization is proposed to reduce the complexity.
In addition, we propose a region-aware spatial propagation network (RASPN) for further depth refinement based on the semantic prior constraint.
arXiv Detail & Related papers (2023-09-01T09:11:20Z) - Perspective-aware Convolution for Monocular 3D Object Detection [2.33877878310217]
We propose a novel perspective-aware convolutional layer that captures long-range dependencies in images.
By enforcing convolutional kernels to extract features along the depth axis of every image pixel, we incorporates perspective information into network architecture.
We demonstrate improved performance on the KITTI3D dataset, achieving a 23.9% average precision in the easy benchmark.
arXiv Detail & Related papers (2023-08-24T17:25:36Z) - Background Prompting for Improved Object Depth [70.25467510077706]
Estimating the depth of objects from a single image is a valuable task for many vision, robotics, and graphics applications.
We propose a simple yet effective Background Prompting strategy that adapts the input object image with a learned background.
Results on multiple synthetic and real datasets demonstrate consistent improvements in real object depths for a variety of existing depth networks.
arXiv Detail & Related papers (2023-06-08T17:59:59Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
In this paper, we advocate that replicating the traditional two stages framework with deep neural networks improves both the interpretability and the accuracy of the results.
Our network operates in two steps: 1) the local computation of the local depth maps with a deep MVS technique, and, 2) the depth maps and images' features fusion to build a single TSDF volume.
In order to improve the matching performance between images acquired from very different viewpoints, we introduce a rotation-invariant 3D convolution kernel called PosedConv.
arXiv Detail & Related papers (2021-08-19T11:33:58Z) - S2R-DepthNet: Learning a Generalizable Depth-specific Structural
Representation [63.58891781246175]
Human can infer the 3D geometry of a scene from a sketch instead of a realistic image, which indicates that the spatial structure plays a fundamental role in understanding the depth of scenes.
We are the first to explore the learning of a depth-specific structural representation, which captures the essential feature for depth estimation and ignores irrelevant style information.
Our S2R-DepthNet can be well generalized to unseen real-world data directly even though it is only trained on synthetic data.
arXiv Detail & Related papers (2021-04-02T03:55:41Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z) - 3dDepthNet: Point Cloud Guided Depth Completion Network for Sparse Depth
and Single Color Image [42.13930269841654]
Our network offers a novel 3D-to-2D coarse-to-fine dual densification design that is both accurate and lightweight.
Experiments on the KITTI dataset show our network achieves state-of-art accuracy while being more efficient.
arXiv Detail & Related papers (2020-03-20T10:19:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.