論文の概要: Instance-wise Supervision-level Optimization in Active Learning
- arxiv url: http://arxiv.org/abs/2503.06517v1
- Date: Sun, 09 Mar 2025 08:39:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:51:04.042769
- Title: Instance-wise Supervision-level Optimization in Active Learning
- Title(参考訳): アクティブラーニングにおけるインスタンスワイド・スーパービジョンレベルの最適化
- Authors: Shinnosuke Matsuo, Riku Togashi, Ryoma Bise, Seiichi Uchida, Masahiro Nomura,
- Abstract要約: Active Learning (AL)はラベル効率のよい機械学習パラダイムであり、学習効率を最大化するために高価値インスタンスを選択的にアノテートすることに焦点を当てている。
このフレームワークは、アノテーションをアノテートするインスタンスを選択するだけでなく、固定されたアノテーション予算内でそれらの最適なアノテーションレベルを決定する。
分類実験では、ISOは従来のAL手法を一貫して上回り、完全な監督と弱い監督を組み合わせた最先端のALアプローチを超越し、全体的なコストで高い精度を達成している。
- 参考スコア(独自算出の注目度): 16.138718472546564
- License:
- Abstract: Active learning (AL) is a label-efficient machine learning paradigm that focuses on selectively annotating high-value instances to maximize learning efficiency. Its effectiveness can be further enhanced by incorporating weak supervision, which uses rough yet cost-effective annotations instead of exact (i.e., full) but expensive annotations. We introduce a novel AL framework, Instance-wise Supervision-Level Optimization (ISO), which not only selects the instances to annotate but also determines their optimal annotation level within a fixed annotation budget. Its optimization criterion leverages the value-to-cost ratio (VCR) of each instance while ensuring diversity among the selected instances. In classification experiments, ISO consistently outperforms traditional AL methods and surpasses a state-of-the-art AL approach that combines full and weak supervision, achieving higher accuracy at a lower overall cost. This code is available at https://github.com/matsuo-shinnosuke/ISOAL.
- Abstract(参考訳): Active Learning(AL)はラベル効率のよい機械学習パラダイムであり、学習効率を最大化するために高価値インスタンスを選択的にアノテートすることに焦点を当てている。
その効果は、厳密な(完全な)アノテーションではなく、粗悪で費用対効果の高いアノテーションを使用する弱い監督を組み込むことによってさらに強化することができる。
このフレームワークは、アノテーションをアノテートするインスタンスを選択するだけでなく、固定されたアノテーション予算内でそれらの最適なアノテーションレベルを決定する。
その最適化基準は、選択されたインスタンス間の多様性を確保しながら、各インスタンスの価値対コスト比(VCR)を活用する。
分類実験では、ISOは従来のAL手法を一貫して上回り、完全な監督と弱い監督を組み合わせた最先端のALアプローチを超越し、全体的なコストで高い精度を達成している。
このコードはhttps://github.com/matsuo-shinnosuke/ISOAL.comで入手できる。
関連論文リスト
- An Experimental Design Framework for Label-Efficient Supervised Finetuning of Large Language Models [55.01592097059969]
命令データセットの監視された微調整は、目覚ましいゼロショットの一般化能力を達成する上で重要な役割を担っている。
アクティブラーニングは、未ラベルのプールからアノテートするサンプルの有用なサブセットを特定するのに効果的である。
本研究では,能動学習の計算ボトルネックを回避するための実験設計を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:56:54Z) - BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
多様な不確実なデータのバランスをとるために適応的なサブプールを構築する新しいフレームワークであるBalancing Active Learning (BAL)を導入する。
我々のアプローチは、広く認識されているベンチマークにおいて、確立されたすべてのアクティブな学習方法より1.20%優れています。
論文 参考訳(メタデータ) (2023-12-26T08:14:46Z) - How to Efficiently Annotate Images for Best-Performing Deep Learning Based Segmentation Models: An Empirical Study with Weak and Noisy Annotations and Segment Anything Model [16.745318743249864]
ディープニューラルネットワーク(DNN)は、様々な画像セグメンテーションタスクで例外的なパフォーマンスを示している。
この課題を軽減するために、弱いラベルを使ったり、より正確でない(ノイズの多い)アノテーションを使ったりできる。
ノイズと弱いラベルは生成がかなり早くなり、同時にアノテートされた画像がより高速になる。
論文 参考訳(メタデータ) (2023-12-17T04:26:42Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
本稿では,ラベルの少ない新しい学習環境である,画像分類のための1ビット監督について述べる。
多段階学習パラダイムを提案し、負ラベル抑圧を半教師付き半教師付き学習アルゴリズムに組み込む。
複数のベンチマークにおいて、提案手法の学習効率は、フルビットの半教師付き監視手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-26T07:39:00Z) - Learning to Rank for Active Learning via Multi-Task Bilevel Optimization [29.207101107965563]
データ取得のための学習代理モデルを用いて、ラベルのないインスタンスのバッチを選択することを目的とした、アクティブな学習のための新しいアプローチを提案する。
このアプローチにおける重要な課題は、ユーティリティ関数の入力の一部を構成するデータの歴史が時間とともに増大するにつれて、よく一般化する取得関数を開発することである。
論文 参考訳(メタデータ) (2023-10-25T22:50:09Z) - Active Learning for Abstractive Text Summarization [50.79416783266641]
本稿では,抽象テキスト要約におけるアクティブラーニングのための最初の効果的なクエリ戦略を提案する。
ALアノテーションにおける私たちの戦略は、ROUGEと一貫性スコアの点からモデル性能を向上させるのに役立ちます。
論文 参考訳(メタデータ) (2023-01-09T10:33:14Z) - Active Learning for Open-set Annotation [38.739845944840454]
我々はLfOSAと呼ばれる新しいアクティブラーニングフレームワークを提案する。このフレームワークは、効果的なサンプリング戦略を用いて分類性能を高め、アノテーションのための既知のクラスからサンプルを正確に検出する。
実験結果から,提案手法は既知のクラスの選択精度を著しく向上し,アノテーションコストの低い分類精度を最先端の能動学習法よりも向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-01-18T06:11:51Z) - Active Learning at the ImageNet Scale [43.595076693347835]
本研究では,画像ネット上でのアクティブラーニング(AL)と事前学習(SSP)の組み合わせについて検討する。
学習者が選択したクラス不均衡なサンプルから,小型の玩具データセットのパフォーマンスがImageNetのパフォーマンスを表すものではないことが判明した。
本稿では、ランダムサンプリングを一貫して上回る、単純でスケーラブルなALアルゴリズムであるBa balanced Selection (BASE)を提案する。
論文 参考訳(メタデータ) (2021-11-25T02:48:51Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
弱教師付き画像ラベルを持つ対象クラスにおける局所化モデル学習の問題点について検討する。
本研究では,対象関数のみの学習は知識伝達の弱い形態であると主張する。
COCOおよびILSVRC 2013検出データセットの実験では、ペアワイズ類似度関数を含むことにより、ローカライズモデルの性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-03-18T17:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。