DeepCache: Accelerating Diffusion Models for Free
- URL: http://arxiv.org/abs/2312.00858v2
- Date: Thu, 7 Dec 2023 17:24:18 GMT
- Title: DeepCache: Accelerating Diffusion Models for Free
- Authors: Xinyin Ma, Gongfan Fang, Xinchao Wang
- Abstract summary: DeepCache is a training-free paradigm that accelerates diffusion models from the perspective of model architecture.
DeepCache capitalizes on the inherent temporal redundancy observed in the sequential denoising steps of diffusion models.
Under the same throughput, DeepCache effectively achieves comparable or even marginally improved results with DDIM or PLMS.
- Score: 65.02607075556742
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Diffusion models have recently gained unprecedented attention in the field of
image synthesis due to their remarkable generative capabilities.
Notwithstanding their prowess, these models often incur substantial
computational costs, primarily attributed to the sequential denoising process
and cumbersome model size. Traditional methods for compressing diffusion models
typically involve extensive retraining, presenting cost and feasibility
challenges. In this paper, we introduce DeepCache, a novel training-free
paradigm that accelerates diffusion models from the perspective of model
architecture. DeepCache capitalizes on the inherent temporal redundancy
observed in the sequential denoising steps of diffusion models, which caches
and retrieves features across adjacent denoising stages, thereby curtailing
redundant computations. Utilizing the property of the U-Net, we reuse the
high-level features while updating the low-level features in a very cheap way.
This innovative strategy, in turn, enables a speedup factor of 2.3$\times$ for
Stable Diffusion v1.5 with only a 0.05 decline in CLIP Score, and 4.1$\times$
for LDM-4-G with a slight decrease of 0.22 in FID on ImageNet. Our experiments
also demonstrate DeepCache's superiority over existing pruning and distillation
methods that necessitate retraining and its compatibility with current sampling
techniques. Furthermore, we find that under the same throughput, DeepCache
effectively achieves comparable or even marginally improved results with DDIM
or PLMS. The code is available at https://github.com/horseee/DeepCache
Related papers
- Ca2-VDM: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing [66.66090399385304]
Ca2-VDM is an efficient autoregressive VDM with Causal generation and Cache sharing.
For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps.
For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost.
arXiv Detail & Related papers (2024-11-25T13:33:41Z) - SmoothCache: A Universal Inference Acceleration Technique for Diffusion Transformers [4.7170474122879575]
Diffusion Transformers (DiT) have emerged as powerful generative models for various tasks, including image, video, and speech synthesis.
We introduce SmoothCache, a model-agnostic inference acceleration technique for DiT architectures.
Our experiments demonstrate that SmoothCache achieves 71% 8% to speed up while maintaining or even improving generation quality across diverse modalities.
arXiv Detail & Related papers (2024-11-15T16:24:02Z) - FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality [58.80996741843102]
FasterCache is a training-free strategy designed to accelerate the inference of video diffusion models with high-quality generation.
We show that FasterCache can significantly accelerate video generation while keeping video quality comparable to the baseline.
arXiv Detail & Related papers (2024-10-25T07:24:38Z) - Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching [56.286064975443026]
We make an interesting and somehow surprising observation: the computation of a large proportion of layers in the diffusion transformer, through a caching mechanism, can be readily removed even without updating the model parameters.
We introduce a novel scheme, named Learningto-Cache (L2C), that learns to conduct caching in a dynamic manner for diffusion transformers.
Experimental results show that L2C largely outperforms samplers such as DDIM and DPM-r, alongside prior cache-based methods at the same inference speed.
arXiv Detail & Related papers (2024-06-03T18:49:57Z) - Fixed Point Diffusion Models [13.035518953879539]
Fixed Point Diffusion Model (FPDM) is a novel approach to image generation that integrates the concept of fixed point solving into the framework of diffusion-based generative modeling.
Our approach embeds an implicit fixed point solving layer into the denoising network of a diffusion model, transforming the diffusion process into a sequence of closely-related fixed point problems.
We conduct experiments with state-of-the-art models on ImageNet, FFHQ, CelebA-HQ, and LSUN-Church, demonstrating substantial improvements in performance and efficiency.
arXiv Detail & Related papers (2024-01-16T18:55:54Z) - Cache Me if You Can: Accelerating Diffusion Models through Block Caching [67.54820800003375]
A large image-to-image network has to be applied many times to iteratively refine an image from random noise.
We investigate the behavior of the layers within the network and find that 1) the layers' output changes smoothly over time, 2) the layers show distinct patterns of change, and 3) the change from step to step is often very small.
We propose a technique to automatically determine caching schedules based on each block's changes over timesteps.
arXiv Detail & Related papers (2023-12-06T00:51:38Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
Post-training quantization (PTQ) is considered a go-to compression method for other tasks.
We propose a novel PTQ method specifically tailored towards the unique multi-timestep pipeline and model architecture.
We show that our proposed method is able to quantize full-precision unconditional diffusion models into 4-bit while maintaining comparable performance.
arXiv Detail & Related papers (2023-02-08T19:38:59Z) - Improving Diffusion Model Efficiency Through Patching [0.0]
We find that adding a simple ViT-style patching transformation can considerably reduce a diffusion model's sampling time and memory usage.
We justify our approach both through an analysis of diffusion model objective, and through empirical experiments on LSUN Church, ImageNet 256, and FFHQ 1024.
arXiv Detail & Related papers (2022-07-09T18:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.