論文の概要: Reinforcement Learning with Verifiable Rewards: GRPO's Effective Loss, Dynamics, and Success Amplification
- arxiv url: http://arxiv.org/abs/2503.06639v4
- Date: Mon, 20 Oct 2025 18:12:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:04.429965
- Title: Reinforcement Learning with Verifiable Rewards: GRPO's Effective Loss, Dynamics, and Success Amplification
- Title(参考訳): 検証可能なリワードによる強化学習:GRPOの効果的な損失、ダイナミクス、成功の増幅
- Authors: Youssef Mroueh,
- Abstract要約: グループ相対政策最適化は、検証可能な(バイナリ)報酬の下でLLMの推論を促進するために最近導入された。
我々は、報酬正規化(平均のみ対平均+分散)とKL分散を用いた更新の正則化の仕方が異なる変種を解析する。
- 参考スコア(独自算出の注目度): 10.617854230082896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Group Relative Policy Optimization (GRPO) was introduced and used recently for promoting reasoning in LLMs under verifiable (binary) rewards. We show that the mean + variance calibration of these rewards induces a weighted contrastive loss in which the contrastive samples are synthetic data drawn from the previous policy. While GRPO was originally paired with clipping to keep updates near the old policy, we analyze variants that differ in reward normalization (mean-only vs mean + variance) and in how they regularize updates using KL divergence: either penalizing divergence from the previous model (mirror), penalizing divergence from a fixed reference model $\pi_{\mathrm{ref}}$, or combining both forms of regularization. For each, the optimal policy $\pi_n$ admits an explicit form in terms of the binary reward and the first and second order statistics of the reward under $\pi_{n-1}$, as well as the policies $\pi_{n-1}$ and $\pi_{\mathrm{ref}}$. Iterating results in a sequence $\{\pi_n\}$ whose probability of success (PoS) obeys a simple recurrence that converges to a fixed point determined by the reference PoS and the regularization strength. We further show that this fixed point exceeds the reference, demonstrating that GRPO amplifies the policy's probability of success.
- Abstract(参考訳): グループ相対政策最適化(GRPO)は、最近、検証可能な(バイナリ)報酬の下でLLMの推論を促進するために導入された。
これらの報酬の平均値と分散値のキャリブレーションは、比較サンプルが以前のポリシーから抽出された合成データである重み付きコントラスト損失を誘導することを示す。
GRPOは元々、旧ポリシーの近傍で更新を保持するためにクリップとペアを組んだが、報酬正規化(平均値と平均値+分散値)が異なる変種を解析し、KLの発散を使って更新を正則化する方法を解析した: 以前のモデル(ミラー)からの発散を罰すること、固定参照モデル$\pi_{\mathrm{ref}}$からの発散を罰すること、あるいは、両方の正則化を組み合わせることである。
それぞれに対して、最適ポリシー $\pi_n$ は、二項報酬と二項報酬の第一及び第二次統計量、およびポリシー $\pi_{n-1}$ と $\pi_{\mathrm{ref}}$ を明示的な形式として認める。
成功の確率 (PoS) が、基準PoSと正規化強度によって決定される固定点に収束する単純な再帰に従うような数列$\{\pi_n\}$の反復結果が得られる。
さらに、この固定点が基準を超えることを示し、GRPOが政策の成功確率を増幅することを示す。
関連論文リスト
- GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy [0.0]
グループ相対政策最適化(GRPO)のようなアルゴリズムによる強化学習(RL)は、LLM推論を改善する。
本稿では,textbfDynamic Entropy Weightingを用いてこの問題を解決する。
私たちの中核的な考え方は、正しい応答における高エントロピートークンは、より高いパフォーマンスの天井に向かってポリシーを導くことができるということです。
論文 参考訳(メタデータ) (2025-08-06T11:42:47Z) - Reusing Trajectories in Policy Gradients Enables Fast Convergence [59.27926064817273]
政策勾配法 (PG) は効果的な強化学習アルゴリズムの一種である。
本稿では,古いトラジェクトリと新しいトラジェクトリを組み合わせたPGアルゴリズムであるRPG(Retrospective Policy Gradient)を提案する。
確立された仮定の下では、RPGは文献で最もよく知られたレートである$widetildeO(epsilon-1)$のサンプル複雑性を達成する。
論文 参考訳(メタデータ) (2025-06-06T15:42:15Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
本稿では,最適優位関数を直接近似する新しい2段階ポリシー最適化フレームワークを提案する。
A$*-POは、幅広い数学的推論ベンチマークで競合性能を達成する。
PPO、GRPO、REBELと比較して、トレーニング時間を最大2$times$、ピークメモリ使用率を30%以上削減する。
論文 参考訳(メタデータ) (2025-05-27T03:58:50Z) - $Q\sharp$: Provably Optimal Distributional RL for LLM Post-Training [60.01594991938747]
$Qsharp$ は KL 正規化 RL の値に基づくアルゴリズムで、最適な正規化 $Q$ 関数を使用して参照ポリシーを導出する。
この結果から,LLMのポストトレーニングに有効なアプローチとして$Qsharp$が注目され,性能と理論的保証が向上した。
論文 参考訳(メタデータ) (2025-02-27T21:43:00Z) - Distributionally Robust Policy Learning under Concept Drifts [33.44768994272614]
本稿では、より曖昧な問題、つまり、コンセプトドリフトの下でのロバストな政策学習について研究する。
まず、与えられた政策の最悪の平均報酬を評価するための2倍のロバスト推定器を提供する。
次に、所定のポリシークラス内で推定されたポリシー値を最大化するポリシーを出力する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-18T19:53:56Z) - Model-free Low-Rank Reinforcement Learning via Leveraged Entry-wise Matrix Estimation [48.92318828548911]
政策改善と政策評価の段階を交互に行うモデルフリー学習アルゴリズムであるLoRa-PI(Low-Rank Policy Iteration)を提案する。
LoRa-PIは$widetildeO(S+Aover mathrmpoly (1-gamma)varepsilon2)$サンプルを使用して$varepsilon$-optimal Policyを学習する。
論文 参考訳(メタデータ) (2024-10-30T20:22:17Z) - Information Theoretic Guarantees For Policy Alignment In Large Language Models [19.315342870604113]
参照ポリシーの下での報酬がガウス以下の尾を持つ場合、$sqrtmathsfKL$情報理論上界が成り立つことを示す。
また、$n$ポリシーの最高値として、$mathsfKL$上界が任意の$f$-divergenceに対して得られることを証明します。
論文 参考訳(メタデータ) (2024-06-09T18:41:50Z) - Theoretical guarantees on the best-of-n alignment policy [110.21094183592358]
我々は、KLの最良のn$ポリシーと参照ポリシーのKL分岐が、実際のKL分岐の上限であることを示す。
また、KLの発散に対する新しい推定器を提案し、それが密近似をもたらすことを実証的に示す。
我々は、利益率とKLの最良のn$アライメントポリシーの相違点を分析することで締めくくった。
論文 参考訳(メタデータ) (2024-01-03T18:39:13Z) - Estimating Optimal Policy Value in General Linear Contextual Bandits [50.008542459050155]
多くのバンドイット問題において、政策によって達成可能な最大報酬は、前もって不明であることが多い。
我々は,最適政策が学習される前に,サブ線形データ構造における最適政策値を推定する問題を考察する。
V*$で問題依存上界を推定する,より実用的で効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-19T01:09:24Z) - Reward-Mixing MDPs with a Few Latent Contexts are Learnable [75.17357040707347]
報酬混合マルコフ決定過程(RMMDP)におけるエピソード強化学習の検討
我々のゴールは、そのようなモデルにおける時間段階の累積報酬をほぼ最大化する、ほぼ最適に近いポリシーを学ぶことである。
論文 参考訳(メタデータ) (2022-10-05T22:52:00Z) - Reward-Free Model-Based Reinforcement Learning with Linear Function
Approximation [92.99933928528797]
エピソードマルコフ決定過程(MDP)に対する線形関数近似を用いたモデルに基づく無報酬強化学習について検討する。
計画段階では、特定の報酬関数が与えられ、探索フェーズから収集したサンプルを使用して良い政策を学ぶ。
任意の報酬関数に対して$epsilon$-optimal Policyを得るには,最大$tilde O(H4d(H + d)epsilon-2)$ episodesをサンプリングする必要がある。
論文 参考訳(メタデータ) (2021-10-12T23:03:58Z) - The Curse of Passive Data Collection in Batch Reinforcement Learning [82.6026077420886]
高い利害関係のアプリケーションでは、アクティブな実験は危険すぎると考えられ、データはしばしば受動的に収集される。
バンディットやパッシブ、アクティブなデータ収集などの単純な場合も同様に効果的であるが、制御された状態のシステムからデータを集める場合、パッシブサンプリングの価格ははるかに高い。
論文 参考訳(メタデータ) (2021-06-18T07:54:23Z) - On the Convergence and Sample Efficiency of Variance-Reduced Policy
Gradient Method [38.34416337932712]
政策は、例えばREINFORCEのようなリッチな強化学習(RL)手法を生み出します。
しかし、そのようなメソッドが$epsilon$-optimal Policyを見つけるための最もよく知られたサンプルの複雑さは$mathcalO(epsilon-3)$である。
第一次政策最適化法の基本収束特性とサンプル効率について検討する。
論文 参考訳(メタデータ) (2021-02-17T07:06:19Z) - Robust Policy Gradient against Strong Data Corruption [30.910088777897045]
対人汚職下での堅牢な強化学習の課題を報酬と移行の両面から検討する。
攻撃モデルでは、エピソード内の各ステップで報酬と移行を任意に破壊できるテクティタダプティブな敵を仮定する。
我々はフィルタポリシグラディエントアルゴリズムを開発し、汚職に対する報酬を許容し、$O(epsilon1/4)$-optimal Policy を見つけることができる。
論文 参考訳(メタデータ) (2021-02-11T01:48:38Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
本稿では,最適化アルゴリズム(OPPO)の最適変種を提案する。
OPPO は $tildeO(sqrtd2 H3 T )$ regret を達成する。
我々の知る限りでは、OPPOは、探索する最初の証明可能な効率的なポリシー最適化アルゴリズムである。
論文 参考訳(メタデータ) (2019-12-12T08:40:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。