InftyThink: Breaking the Length Limits of Long-Context Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2503.06692v3
- Date: Sat, 24 May 2025 06:01:09 GMT
- Title: InftyThink: Breaking the Length Limits of Long-Context Reasoning in Large Language Models
- Authors: Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, Yueting Zhuang,
- Abstract summary: We introduce InftyThink, a paradigm that transforms monolithic reasoning into an iterative process with intermediate summarization.<n>By interleaving short reasoning segments with concise progress summaries, our approach enables reasoning depth while maintaining bounded computational costs.
- Score: 44.86868676444545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advanced reasoning in large language models has achieved remarkable performance on challenging tasks, but the prevailing long-context reasoning paradigm faces critical limitations: quadratic computational scaling with sequence length, reasoning constrained by maximum context boundaries, and performance degradation beyond pre-training context windows. Existing approaches primarily compress reasoning chains without addressing the fundamental scaling problem. To overcome these challenges, we introduce InftyThink, a paradigm that transforms monolithic reasoning into an iterative process with intermediate summarization. By interleaving short reasoning segments with concise progress summaries, our approach enables unbounded reasoning depth while maintaining bounded computational costs. This creates a characteristic sawtooth memory pattern that significantly reduces computational complexity compared to traditional approaches. Furthermore, we develop a methodology for reconstructing long-context reasoning datasets into our iterative format, transforming OpenR1-Math into 333K training instances. Experiments across multiple model architectures demonstrate that our approach reduces computational costs while improving performance, with Qwen2.5-Math-7B showing 3-13% improvements across MATH500, AIME24, and GPQA_diamond benchmarks. Our work challenges the assumed trade-off between reasoning depth and computational efficiency, providing a more scalable approach to complex reasoning without architectural modifications.
Related papers
- ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
Recent advancements in large reasoning models (LRMs) have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT)<n>We propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint during the token generation of the reasoning process.<n>Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well.
arXiv Detail & Related papers (2025-06-23T16:20:44Z) - Excessive Reasoning Attack on Reasoning LLMs [26.52688123765127]
In this work, we expose a novel threat: adversarial inputs can be crafted to exploit excessive reasoning behaviors.<n>Our results demonstrate a 3x to 9x increase in reasoning length with comparable utility performance.<n>Our crafted adversarial inputs exhibit transferability, inducing computational overhead in o3-mini, o1-mini, DeepSeek-R1, and QWQ models.
arXiv Detail & Related papers (2025-06-17T10:16:52Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
We introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling.<n>We show that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget.
arXiv Detail & Related papers (2025-05-19T11:30:41Z) - PENCIL: Long Thoughts with Short Memory [34.880226179021996]
We propose PENCIL, which incorporates a reduction mechanism into the autoregressive generation process.
PENCIL significantly reduces the maximal context length required during generation.
We demonstrate PENCIL achieves 97% accuracy on the challenging Einstein's puzzle.
arXiv Detail & Related papers (2025-03-18T15:14:14Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thought prompting elicits step-by-step problem solving, but often at the cost of excessive verbosity in intermediate outputs.<n>We propose Sketch-of-Thought (SoT), a prompting framework that integrates cognitively inspired reasoning paradigms with linguistic constraints.<n>SoT achieves token reductions of up to 78% with minimal accuracy loss across 15 reasoning datasets.
arXiv Detail & Related papers (2025-03-07T06:57:17Z) - PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models [59.920971312822736]
We introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems.
The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction.
Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods.
arXiv Detail & Related papers (2025-03-04T06:32:30Z) - Meta-Reasoner: Dynamic Guidance for Optimized Inference-time Reasoning in Large Language Models [31.556646366268286]
Large Language Models increasingly rely on prolonged reasoning chains to solve complex tasks.
This trial-and-error approach often leads to high computational overhead and error propagation.
We introduce Meta-Reasoner, a framework that dynamically optimize inference-time reasoning.
arXiv Detail & Related papers (2025-02-27T09:40:13Z) - Adaptive Graph of Thoughts: Test-Time Adaptive Reasoning Unifying Chain, Tree, and Graph Structures [0.0]
We introduce Adaptive Graph of Thoughts (AGoT), a dynamic, graph-based inference framework.<n>AGoT enhances Large Language Models (LLMs) reasoning solely at test time.<n>We validate our approach on diverse benchmarks spanning multi-hop retrieval, scientific reasoning, and mathematical problem-solving.
arXiv Detail & Related papers (2025-02-07T16:54:19Z) - Coarse-to-Fine Process Reward Modeling for Mathematical Reasoning [11.15613673478208]
The Process Reward Model (PRM) plays a crucial role in mathematical reasoning tasks, requiring high-quality supervised process data.<n>We observe that reasoning steps generated by Large Language Models (LLMs) often fail to exhibit strictly incremental information, leading to redundancy.<n>We propose CFPRM, a simple yet effective coarse-to-fine strategy for detecting redundant steps.
arXiv Detail & Related papers (2025-01-23T12:44:45Z) - Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs [76.43407125275202]
o1-like models can emulate human-like long-time thinking during inference.<n>This paper presents the first comprehensive study on the prevalent issue of overthinking in these models.<n>We propose strategies to mitigate overthinking, streamlining reasoning processes without compromising accuracy.
arXiv Detail & Related papers (2024-12-30T18:55:12Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.<n>We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.<n> Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
We introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.<n>Results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArithm), logical reasoning and commonsense tasks.<n>Our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-10T17:14:36Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
Being prompted to engage in reasoning has emerged as a core technique for using large language models (LLMs)<n>This work introduces a novel approach based on computational models of metareasoning used in cognitive science.<n>We develop a reward function that incorporates the Value of Computation by penalizing unnecessary reasoning.
arXiv Detail & Related papers (2024-10-07T23:48:52Z) - Recursion of Thought: A Divide-and-Conquer Approach to Multi-Context
Reasoning with Language Models [58.41943058963672]
We propose a new inference framework called Recursion of Thought (RoT)
RoT introduces several special tokens that the models can output to trigger context-related operations.
Experiments with multiple architectures including GPT-3 show that RoT dramatically improves LMs' inference capability to solve problems.
arXiv Detail & Related papers (2023-06-12T06:34:16Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALM is a framework for dynamically allocating different amounts of compute per input and generation timestep.
We demonstrate the efficacy of our framework in reducing compute -- potential speedup of up to $times 3$ -- while provably maintaining high performance.
arXiv Detail & Related papers (2022-07-14T17:00:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.