論文の概要: What's in a Latent? Leveraging Diffusion Latent Space for Domain Generalization
- arxiv url: http://arxiv.org/abs/2503.06698v1
- Date: Sun, 09 Mar 2025 17:29:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:51:03.608048
- Title: What's in a Latent? Leveraging Diffusion Latent Space for Domain Generalization
- Title(参考訳): 潜伏空間とは何か?ドメイン一般化のための拡散潜伏空間の活用
- Authors: Xavier Thomas, Deepti Ghadiyaram,
- Abstract要約: ドメインの一般化は、新しい、目に見えないデータ分布に一般化できるモデルを開発することを目的としている。
モデルアーキテクチャと事前学習の目的が機能豊かさに与える影響について検討する。
我々のフレームワークは、最大4%以上のテスト精度向上により、未確認領域への一般化を改善する。
- 参考スコア(独自算出の注目度): 10.079844840768054
- License:
- Abstract: Domain Generalization aims to develop models that can generalize to novel and unseen data distributions. In this work, we study how model architectures and pre-training objectives impact feature richness and propose a method to effectively leverage them for domain generalization. Specifically, given a pre-trained feature space, we first discover latent domain structures, referred to as pseudo-domains, that capture domain-specific variations in an unsupervised manner. Next, we augment existing classifiers with these complementary pseudo-domain representations making them more amenable to diverse unseen test domains. We analyze how different pre-training feature spaces differ in the domain-specific variances they capture. Our empirical studies reveal that features from diffusion models excel at separating domains in the absence of explicit domain labels and capture nuanced domain-specific information. On 5 datasets, we show that our very simple framework improves generalization to unseen domains by a maximum test accuracy improvement of over 4% compared to the standard baseline Empirical Risk Minimization (ERM). Crucially, our method outperforms most algorithms that access domain labels during training.
- Abstract(参考訳): ドメインの一般化は、新しい、目に見えないデータ分布に一般化できるモデルを開発することを目的としている。
本研究では,モデルアーキテクチャと事前学習対象が特徴の豊かさにどのように影響するかを考察し,ドメインの一般化に効果的に活用する方法を提案する。
具体的には、事前訓練された特徴空間から、教師なしの方法でドメイン固有のバリエーションをキャプチャする擬似ドメインと呼ばれる潜在ドメイン構造を最初に発見する。
次に、これらの相補的な擬似ドメイン表現により既存の分類器を拡張し、多様な未確認テストドメインに対してより快適にする。
学習前の特徴空間が、取得したドメイン固有の分散にどのように異なるかを分析する。
実験により,ドメインラベルが明示されていない場合,拡散モデルの特徴がドメインの分離に優れ,ドメイン固有情報が不明瞭であることが明らかとなった。
5つのデータセットにおいて、我々の非常に単純なフレームワークは、標準的な経験的リスク最小化(ERM)と比較して、最大4%以上のテスト精度の改善により、未確認領域への一般化を改善する。
重要なことは、トレーニング中にドメインラベルにアクセスするほとんどのアルゴリズムよりも優れています。
関連論文リスト
- DIGIC: Domain Generalizable Imitation Learning by Causal Discovery [69.13526582209165]
因果性は機械学習と組み合わせて、ドメインの一般化のための堅牢な表現を生成する。
我々は、実証データ分布を活用して、ドメインの一般化可能なポリシーの因果的特徴を発見するために、異なる試みを行っている。
DIGICと呼ばれる新しいフレームワークを設計し、実演データ分布から専門家行動の直接的な原因を見出すことにより因果的特徴を識別する。
論文 参考訳(メタデータ) (2024-02-29T07:09:01Z) - Domain Generalization via Causal Adjustment for Cross-Domain Sentiment
Analysis [59.73582306457387]
クロスドメイン感情分析における領域一般化の問題に焦点をあてる。
本稿では,ドメイン固有表現とドメイン不変表現をアンタングル化するバックドア調整に基づく因果モデルを提案する。
一連の実験は、我々のモデルの優れたパフォーマンスと堅牢性を示しています。
論文 参考訳(メタデータ) (2024-02-22T13:26:56Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
本稿では、モデルがトレーニングされたドメインと異なる新しいドメインに適用されたときに発生するドメインシフトに焦点を当てる。
ドメイン固有モデルを学習するためのD$3$Gという新しい手法を提案する。
以上の結果から,D$3$Gは最先端の手法より一貫して優れていた。
論文 参考訳(メタデータ) (2023-02-06T08:11:16Z) - Domain Generalization via Selective Consistency Regularization for Time
Series Classification [16.338176636365752]
ドメイン一般化手法は、限られた数のソースドメインからのデータで、ドメインシフトに頑健なモデルを学習することを目的としている。
本稿では,ソースドメイン間の予測一貫性を選択的に適用する表現学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-16T01:57:35Z) - Exploiting Domain-Specific Features to Enhance Domain Generalization [10.774902700296249]
ドメイン一般化(Domain Generalization, DG)は、観測されていないターゲットドメインで正常に動作するために、複数の観測されたソースドメインからモデルをトレーニングすることを目的としている。
以前のDGアプローチでは、ターゲットドメインを一般化するために、ソース間でのドメイン不変情報を抽出することに重点を置いていた。
本稿ではメタドメイン固有ドメイン不変量(mD)を提案する。
論文 参考訳(メタデータ) (2021-10-18T15:42:39Z) - Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification [81.30327016286009]
一般化可能なRe-IDのための適応型ドメイン固有正規化手法(AdsNorm)を提案する。
本研究では,一般化可能人物 Re-ID に対する適応領域特異的正規化手法 (AdsNorm) を提案する。
論文 参考訳(メタデータ) (2021-05-07T02:54:55Z) - Adaptive Methods for Real-World Domain Generalization [32.030688845421594]
本研究では、未確認の試験サンプルからドメイン情報を活用できるかどうかを検討する。
a) 教師なしのトレーニング例から識別的ドメイン埋め込みを最初に学び、b) このドメイン埋め込みを補足的な情報として使ってドメイン適応モデルを構築する。
提案手法は,各種領域一般化ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2021-03-29T17:44:35Z) - Batch Normalization Embeddings for Deep Domain Generalization [50.51405390150066]
ドメインの一般化は、異なるドメインと見えないドメインで堅牢に実行されるように機械学習モデルをトレーニングすることを目的としている。
一般的な領域一般化ベンチマークにおいて,最先端技術よりも分類精度が著しく向上したことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:02:57Z) - Learning to Balance Specificity and Invariance for In and Out of Domain
Generalization [27.338573739304604]
ドメイン内および外部の一般化性能を改善するモデルである一般化のためのドメイン固有マスクを紹介する。
ドメインの一般化のために、ゴールはソースドメインの集合から学び、見えないターゲットドメインに最もよく一般化する単一のモデルを作成することである。
本研究では,PACSとDomainNetの両面において,単純なベースラインと最先端の手法と比較して,競争力のある性能を示す。
論文 参考訳(メタデータ) (2020-08-28T20:39:51Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。