論文の概要: Delusions of Large Language Models
- arxiv url: http://arxiv.org/abs/2503.06709v1
- Date: Sun, 09 Mar 2025 17:59:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:52:30.309708
- Title: Delusions of Large Language Models
- Title(参考訳): 大規模言語モデルの妄想
- Authors: Hongshen Xu, Zixv yang, Zichen Zhu, Kunyao Lan, Zihan Wang, Mengyue Wu, Ziwei Ji, Lu Chen, Pascale Fung, Kai Yu,
- Abstract要約: 大規模言語モデルは、しばしば幻覚として知られる、事実的に間違っているが、もっともらしい出力を生成する。
高信頼幻覚と定義され、不正確な出力を異常に高い信頼性で検出し、緩和することが難しくなる、より惨めな現象であるLSM妄想を識別する。
- 参考スコア(独自算出の注目度): 62.43923767408462
- License:
- Abstract: Large Language Models often generate factually incorrect but plausible outputs, known as hallucinations. We identify a more insidious phenomenon, LLM delusion, defined as high belief hallucinations, incorrect outputs with abnormally high confidence, making them harder to detect and mitigate. Unlike ordinary hallucinations, delusions persist with low uncertainty, posing significant challenges to model reliability. Through empirical analysis across different model families and sizes on several Question Answering tasks, we show that delusions are prevalent and distinct from hallucinations. LLMs exhibit lower honesty with delusions, which are harder to override via finetuning or self reflection. We link delusion formation with training dynamics and dataset noise and explore mitigation strategies such as retrieval augmented generation and multi agent debating to mitigate delusions. By systematically investigating the nature, prevalence, and mitigation of LLM delusions, our study provides insights into the underlying causes of this phenomenon and outlines future directions for improving model reliability.
- Abstract(参考訳): 大規模言語モデルは、しばしば幻覚として知られる、事実的に間違っているが、もっともらしい出力を生成する。
高信頼幻覚と定義され、不正確な出力を異常に高い信頼性で検出し、緩和することが難しくなる、より惨めな現象であるLSM妄想を識別する。
通常の幻覚とは異なり、妄想は低い不確実性に留まり、信頼性をモデル化する上で重要な課題となっている。
いくつかの質問応答課題において,異なるモデルファミリーとサイズにまたがる経験的分析により,妄想が幻覚と相違していることが判明した。
LLMは妄想で低い誠実さを示し、微調整や自己反射によってオーバーライドするのが困難である。
我々は、妄想形成とトレーニングダイナミクスとデータセットノイズを結びつけ、妄想を緩和するために、検索強化生成やマルチエージェントの議論のような緩和戦略を探索する。
本研究は, LLM妄想の性質, 有病率, 緩和を体系的に研究することによって, この現象の根本原因に関する知見を提供し, モデル信頼性向上に向けた今後の方向性を概説する。
関連論文リスト
- Trust Me, I'm Wrong: High-Certainty Hallucinations in LLMs [45.13670875211498]
LLM(Large Language Models)はしばしば、幻覚として知られる実世界の事実に根ざしていない出力を生成する。
モデルが正しい知識を持つ場合でも、高い確実性で幻覚できることを示す。
論文 参考訳(メタデータ) (2025-02-18T15:46:31Z) - HuDEx: Integrating Hallucination Detection and Explainability for Enhancing the Reliability of LLM responses [0.12499537119440242]
本稿では,HuDExと命名された幻覚検出モデルについて説明する。
提案モデルでは,検出を説明と統合する新たなアプローチを提供し,ユーザとLLM自体がエラーを理解し,低減することができる。
論文 参考訳(メタデータ) (2025-02-12T04:17:02Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
マルチモーダル大規模言語モデル(MLLM)は、視覚言語タスクを前進させる前例のない能力を示した。
本稿では,MLLMにおける幻覚に対処するためのボトムアップ推論フレームワークを提案する。
本フレームワークは、認識レベル情報と認知レベルコモンセンス知識を検証・統合することにより、視覚とテキストの両方の入力における潜在的な問題に体系的に対処する。
論文 参考訳(メタデータ) (2024-12-15T09:10:46Z) - Unfamiliar Finetuning Examples Control How Language Models Hallucinate [75.03210107477157]
大規模な言語モデルは、馴染みのないクエリに直面した時に幻覚化することが知られている。
モデルの微調整データの見慣れない例は、これらのエラーを形作るのに不可欠である。
本研究は,RLファインタニング戦略をさらに研究し,長大なモデル生成の現実性を改善することを目的とする。
論文 参考訳(メタデータ) (2024-03-08T18:28:13Z) - Redefining "Hallucination" in LLMs: Towards a psychology-informed
framework for mitigating misinformation [0.7826806223782052]
認知バイアスやその他の心理的現象に基づく心理的分類法を提案する。
人間が同様の課題を内部的に解決する方法の洞察を活用することで、幻覚を緩和するための戦略を開発することを目指している。
論文 参考訳(メタデータ) (2024-02-01T03:01:11Z) - A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions [40.79317187623401]
大規模言語モデル(LLM)の出現は、自然言語処理(NLP)において大きなブレークスルーとなった。
LLMは幻覚を起こす傾向があり、可視だが非現実的な内容を生成する。
この現象は、実世界の情報検索システムにおけるLCMの信頼性に対する重大な懸念を引き起こす。
論文 参考訳(メタデータ) (2023-11-09T09:25:37Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
大規模言語モデル(LLM)は、質問応答(QA)タスクを含む生成的および知識集約的なタスクを約束している。
本稿では,広範に採用されているLCMとデータセットを用いた医療再生QAシステムにおける幻覚現象を解析する。
論文 参考訳(メタデータ) (2023-10-10T03:05:44Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。