論文の概要: Beyond Black-Box Benchmarking: Observability, Analytics, and Optimization of Agentic Systems
- arxiv url: http://arxiv.org/abs/2503.06745v1
- Date: Sun, 09 Mar 2025 20:02:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:29.433764
- Title: Beyond Black-Box Benchmarking: Observability, Analytics, and Optimization of Agentic Systems
- Title(参考訳): Black-Boxベンチマークを超えて - エージェントシステムの可観測性、分析、最適化
- Authors: Dany Moshkovich, Hadar Mulian, Sergey Zeltyn, Natti Eder, Inna Skarbovsky, Roy Abitbol,
- Abstract要約: エージェントがさまざまなタスクを実行するために協力するエージェントAIシステムの台頭は、その振る舞いを観察し、分析し、最適化する上で、新たな課題を提起する。
従来の評価とベンチマークのアプローチは、これらのシステムの非決定論的、文脈に敏感で動的な性質を扱うのに苦労する。
本稿では,エージェントシステムを開発,テスト,保守にまたがって分析・最適化する上で重要な課題と機会について考察する。
- 参考スコア(独自算出の注目度): 1.415098516077151
- License:
- Abstract: The rise of agentic AI systems, where agents collaborate to perform diverse tasks, poses new challenges with observing, analyzing and optimizing their behavior. Traditional evaluation and benchmarking approaches struggle to handle the non-deterministic, context-sensitive, and dynamic nature of these systems. This paper explores key challenges and opportunities in analyzing and optimizing agentic systems across development, testing, and maintenance. We explore critical issues such as natural language variability and unpredictable execution flows, which hinder predictability and control, demanding adaptive strategies to manage input variability and evolving behaviors. Through our user study, we supported these hypotheses. In particular, we showed a 79% agreement that non deterministic flow of agentic systems acts as a major challenge. Finally, we validated our statements empirically advocating the need for moving beyond classical benchmarking. To bridge these gaps, we introduce taxonomies to present expected analytics outcomes and the ways to collect them by extending standard observability frameworks. Building on these foundations, we introduce and demonstrate novel approach for benchmarking of agent evaluation systems. Unlike traditional "black box" performance evaluation approaches, our benchmark is built from agent runtime logs as input, and analytics outcome including discovered flows and issues. By addressing key limitations in existing methodologies, we aim to set the stage for more advanced and holistic evaluation strategies, which could foster the development of adaptive, interpretable, and robust agentic AI systems.
- Abstract(参考訳): エージェントがさまざまなタスクを実行するために協力するエージェントAIシステムの台頭は、その振る舞いを観察し、分析し、最適化する上で、新たな課題を提起する。
従来の評価とベンチマークのアプローチは、これらのシステムの非決定論的、文脈に敏感で動的な性質を扱うのに苦労する。
本稿では,エージェントシステムを開発,テスト,保守にまたがって分析・最適化する上での課題と機会について考察する。
予測可能性や制御の妨げとなる自然言語の可変性や予測不可能な実行フロー,入力の可変性や振る舞いの進化を管理する適応戦略といった重要な問題について検討する。
ユーザスタディを通じて、私たちはこれらの仮説を支持しました。
特に,エージェントシステムの非決定論的流れが大きな課題となるという79%の合意を示した。
最後に、古典的なベンチマークを超えて進む必要性を実証的に主張する声明を検証した。
これらのギャップを埋めるために、予測される分析結果を示す分類学と、標準可観測性フレームワークを拡張してそれらを収集する方法を導入する。
これらの基礎の上に構築され,エージェント評価システムのベンチマークのための新しいアプローチを導入し,実証する。
従来の"ブラックボックス"のパフォーマンス評価アプローチとは異なり、ベンチマークはエージェントのランタイムログを入力として構築し、フローや問題の発見を含む分析結果を生成する。
既存の方法論における重要な制限に対処することで、適応的、解釈可能、堅牢なエージェントAIシステムの開発を促進する、より高度で包括的な評価戦略のステージを設定することを目指している。
関連論文リスト
- Can We Trust AI Benchmarks? An Interdisciplinary Review of Current Issues in AI Evaluation [2.2241228857601727]
本稿では,定量的なベンチマーク手法の欠点を論じる,約100の学術研究の学際的メタレビューを示す。
これは、より広範な社会技術的問題を伴うベンチマークの設計と適用において、多くのきめ細かい問題をもたらす。
レビューではまた、不正なインセンティブ、妥当性の問題の構築、未知の未知、ベンチマーク結果のゲームに関する問題など、現在のプラクティスにおける一連のシステム的欠陥についても取り上げている。
論文 参考訳(メタデータ) (2025-02-10T15:25:06Z) - Revisiting Benchmark and Assessment: An Agent-based Exploratory Dynamic Evaluation Framework for LLMs [29.72874725703848]
従来のQAベンチマークを、より柔軟な戦略基準のフォーマットに拡張するBenchmark+と、インタラクションプロセスを強化するAccess+という2つの主要な概念を紹介します。
検索強化生成と強化学習を用いてこれらの概念を実装するエージェントベースの評価フレームワークであるTestAgentを提案する。
TestAgentは、さまざまな垂直ドメインシナリオにわたる動的ベンチマークの自動生成と詳細な評価を可能にする。
論文 参考訳(メタデータ) (2024-10-15T11:20:42Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
本稿では,LLMエージェントの分析的評価に適したオープンソース評価フレームワークであるAgentBoardを紹介する。
AgentBoardは、インクリメンタルな進歩と包括的な評価ツールキットをキャプチャする、きめ細かい進捗率のメトリクスを提供する。
これはLLMエージェントの能力と限界に光を当てるだけでなく、その性能の解釈可能性も最前線に広める。
論文 参考訳(メタデータ) (2024-01-24T01:51:00Z) - Evaluating General-Purpose AI with Psychometrics [43.85432514910491]
本稿では,大規模言語モデルなどの汎用AIシステムの包括的かつ正確な評価の必要性について論じる。
現在の評価手法は、主に特定のタスクのベンチマークに基づいており、これらの汎用AIシステムを適切に評価するには不十分である。
これらの課題に対処するため,タスク指向評価から構成指向評価への移行を提案する。
論文 参考訳(メタデータ) (2023-10-25T05:38:38Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
本稿では,静的評価手法から適応テストへのパラダイムシフトについて論じる。
これには、ベンチマークで各テスト項目の特性と価値を推定し、リアルタイムでアイテムを動的に調整することが含まれる。
我々は、AI評価にサイコメトリックを採用する現在のアプローチ、アドバンテージ、そして根底にある理由を分析します。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z) - Towards trustworthy multi-modal motion prediction: Holistic evaluation
and interpretability of outputs [3.5240925434839054]
我々は,アウトプットの評価基準,堅牢性,解釈可能性に焦点をあてる。
マルチモーダル動作予測モデルにアタッチ可能な意図予測層を提案する。
論文 参考訳(メタデータ) (2022-10-28T14:14:22Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
我々は、価値間の近さと緊張を可視化する価値に基づくアセスメントフレームワークを開発する。
我々は、幅広い利害関係者に評価と検討のプロセスを開放しつつ、それらの運用方法に関するガイドラインを提示する。
論文 参考訳(メタデータ) (2022-05-09T19:28:32Z) - Indicators of Attack Failure: Debugging and Improving Optimization of
Adversarial Examples [29.385242714424624]
機械学習モデルの頑健さを敵の例に評価することは難しい問題である。
我々は、勾配に基づく攻撃の最適化において共通の障害を明らかにするための定量的指標のセットを定義する。
実験により,現在の対向ロバスト性評価を可視化し,デバッグし,改善するために,提案した障害指標が有効であることを示す。
論文 参考訳(メタデータ) (2021-06-18T06:57:58Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
エンパワーメント原理は 直立位置での 力学系の教師なし安定化を可能にする
本稿では,ガウスチャネルとして動的システムのトレーニング可能な表現に基づく代替解を提案する。
提案手法は, サンプルの複雑さが低く, 訓練時より安定であり, エンパワーメント機能の本質的特性を有し, 画像からエンパワーメントを推定できることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:10:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。