論文の概要: Data-Scarce Identification of Game Dynamics via Sum-of-Squares Optimization
- arxiv url: http://arxiv.org/abs/2307.06640v2
- Date: Fri, 11 Oct 2024 04:53:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-14 13:27:53.729209
- Title: Data-Scarce Identification of Game Dynamics via Sum-of-Squares Optimization
- Title(参考訳): サム・オブ・スクワッド最適化によるゲームダイナミクスのデータ・スカース同定
- Authors: Iosif Sakos, Antonios Varvitsiotis, Georgios Piliouras,
- Abstract要約: マルチプレイヤーの正規形式ゲームにおけるゲームダイナミクスを識別するためのサイドインフォーム支援回帰(SIAR)フレームワークを提案する。
SIARは、SOS(sum-of-squares)最適化を用いて解決され、その結果、システムの真の力学に確実に収束する近似の階層となる。
SIARフレームワークは,未知のシステムがカオスであっても,通常のゲーム,広く知られているゲームダイナミクスのファミリー,強力なベンチマークの範囲で,プレーヤの挙動を正確に予測する。
- 参考スコア(独自算出の注目度): 29.568222003322344
- License:
- Abstract: Understanding how players adjust their strategies in games, based on their experience, is a crucial tool for policymakers. It enables them to forecast the system's eventual behavior, exert control over the system, and evaluate counterfactual scenarios. The task becomes increasingly difficult when only a limited number of observations are available or difficult to acquire. In this work, we introduce the Side-Information Assisted Regression (SIAR) framework, designed to identify game dynamics in multiplayer normal-form games only using data from a short run of a single system trajectory. To enhance system recovery in the face of scarce data, we integrate side-information constraints into SIAR, which restrict the set of feasible solutions to those satisfying game-theoretic properties and common assumptions about strategic interactions. SIAR is solved using sum-of-squares (SOS) optimization, resulting in a hierarchy of approximations that provably converge to the true dynamics of the system. We showcase that the SIAR framework accurately predicts player behavior across a spectrum of normal-form games, widely-known families of game dynamics, and strong benchmarks, even if the unknown system is chaotic.
- Abstract(参考訳): プレイヤーがゲームの戦略をどのように調整するかを理解することは、彼らの経験に基づいて、政策立案者にとって重要なツールである。
これにより、システムの最終的な振る舞いを予測し、システムの制御を実行し、反現実的なシナリオを評価することができる。
限られた数の観測しか得られず、取得が困難になると、この課題はますます難しくなる。
本研究では,マルチプレイヤー正規形式ゲームにおいて,単一システム軌跡の短絡からのデータのみを用いてゲームダイナミクスを識別するためのサイドインフォーム支援回帰(SIAR)フレームワークを提案する。
不足したデータに直面したシステムリカバリを強化するため,SIARにサイドインフォメーション制約を組み込むことで,ゲーム理論的特性を満足するものや,戦略的相互作用に関する一般的な仮定に,実現可能なソリューションのセットを限定する。
SIARは、SOS(sum-of-squares)最適化を用いて解決され、その結果、システムの真の力学に確実に収束する近似の階層となる。
SIARフレームワークは,未知のシステムがカオスであっても,通常のゲーム,広く知られているゲームダイナミクスのファミリー,強力なベンチマークの範囲で,プレーヤの挙動を正確に予測する。
関連論文リスト
- Scalable Offline Reinforcement Learning for Mean Field Games [6.8267158622784745]
Off-MMDは、純粋なオフラインデータを用いて平均フィールドゲームにおける平衡ポリシーを近似する新しい平均フィールドRLアルゴリズムである。
我々のアルゴリズムは複雑な環境にスケールし、群衆探索やナビゲーションといったベンチマークタスクで強いパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-10-23T14:16:34Z) - Adversarial Knapsack and Secondary Effects of Common Information for Cyber Operations [0.9378911615939924]
本稿では,CTF(Capture the Flag)コンペティションのための動的ネットワーク制御ゲームを形式化し,各タイムステップごとに静的ゲームの詳細を示す。
我々は、重み付きKnapsack問題を相互作用するシステムとして、Adversarial Knapsack最適化問題を定義する。
シナリオ、報酬、コストに対する一般的な認識は、非協力的なゲームのステージにつくでしょう。
論文 参考訳(メタデータ) (2024-03-16T03:41:12Z) - Blending Data-Driven Priors in Dynamic Games [9.085463548798366]
Kullback-Leibler (KL) 正規化による非協調的ダイナミックゲームの解法を定式化する。
我々は,KLGameのNash平衡戦略を,マルチモーダル近似フィードバックをリアルタイムに計算するための効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-21T23:22:32Z) - Auto-Encoding Bayesian Inverse Games [36.06617326128679]
ゲームの性質が不明な逆ゲーム問題を考える。
既存の最大推定手法は、未知のパラメータの点推定のみを提供する。
ベイズ的視点を採り、ゲームパラメータの後方分布を構成する。
この構造化されたVAEは、観測された相互作用のラベルのないデータセットから訓練することができる。
論文 参考訳(メタデータ) (2024-02-14T02:17:37Z) - On the Convergence of No-Regret Learning Dynamics in Time-Varying Games [89.96815099996132]
時間変化ゲームにおける楽観的勾配降下(OGD)の収束を特徴付ける。
我々のフレームワークは、ゼロサムゲームにおけるOGDの平衡ギャップに対して鋭い収束境界をもたらす。
また,静的ゲームにおける動的後悔の保証に関する新たな洞察も提供する。
論文 参考訳(メタデータ) (2023-01-26T17:25:45Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
グラデーションへのアクセスを伴わない連続アクションゲームのナッシュ平衡を近似的に計算する問題について検討する。
ニューラルネットワークを用いてプレイヤーの戦略をモデル化する。
本論文は、制約のない混合戦略と勾配情報のない一般的な連続アクションゲームを解決する最初の方法である。
論文 参考訳(メタデータ) (2022-11-29T05:16:41Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
例えばRoguelikesのようなターンベースの戦略ゲームは、Deep Reinforcement Learning(DRL)にユニークな課題を提示する。
複雑なカテゴリ状態空間をより適切に処理し、設計決定によって強制的に再訓練する必要性を緩和する2つのネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-07T08:47:25Z) - No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium [76.78447814623665]
正規形式ゲームにおいて、相関平衡に収束する最初の非共役な非共役ダイナミクスを与える。
広義のゲームではトリガー後悔の概念を導入し、通常のゲームでは内部の後悔が延長される。
提案アルゴリズムは,各決定点における局所的なサブプロブレムにトリガを分解し,局所解からプレイヤーのグローバルな戦略を構築する。
論文 参考訳(メタデータ) (2020-04-01T17:39:00Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
ゲームプレイを通じて,ゲームの記述を明示せず,託宣のみにアクセス可能な,重要で一般的なゲーム解決環境について検討する。
限られたデュレーション学習フェーズにおいて、アルゴリズムは両方のプレイヤーのアクションを制御し、ゲームを学習し、それをうまくプレイする方法を学習する。
私たちのモチベーションは、クエリされた戦略プロファイルの支払いを評価するのにコストがかかる状況において、利用可能性の低い戦略を迅速に学習することにあります。
論文 参考訳(メタデータ) (2020-02-24T20:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。