Illuminating Darkness: Enhancing Real-world Low-light Scenes with Smartphone Images
- URL: http://arxiv.org/abs/2503.06898v1
- Date: Mon, 10 Mar 2025 04:01:56 GMT
- Title: Illuminating Darkness: Enhancing Real-world Low-light Scenes with Smartphone Images
- Authors: S M A Sharif, Abdur Rehman, Zain Ul Abidin, Rizwan Ali Naqvi, Fayaz Ali Dharejo, Radu Timofte,
- Abstract summary: This dataset comprises 6,425 unique focus-aligned image pairs captured with smartphone sensors in dynamic settings under challenging lighting conditions (0.1--200 lux)<n>We extracted and refined around 180,000 non-overlapping patches from 6,025 collected scenes for training while reserving 400 pairs for benchmarking.<n>In addition to that, we collected 2,117 low-light scenes from different sources for extensive real-world aesthetic evaluation.
- Score: 47.39277249268179
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Digital cameras often struggle to produce plausible images in low-light conditions. Improving these single-shot images remains challenging due to a lack of diverse real-world pair data samples. To address this limitation, we propose a large-scale high-resolution (i.e., beyond 4k) pair Single-Shot Low-Light Enhancement (SLLIE) dataset. Our dataset comprises 6,425 unique focus-aligned image pairs captured with smartphone sensors in dynamic settings under challenging lighting conditions (0.1--200 lux), covering various indoor and outdoor scenes with varying noise and intensity. We extracted and refined around 180,000 non-overlapping patches from 6,025 collected scenes for training while reserving 400 pairs for benchmarking. In addition to that, we collected 2,117 low-light scenes from different sources for extensive real-world aesthetic evaluation. To our knowledge, this is the largest real-world dataset available for SLLIE research. We also propose learning luminance-chrominance (LC) attributes separately through a tuning fork-shaped transformer model to enhance real-world low-light images, addressing challenges like denoising and over-enhancement in complex scenes. We also propose an LC cross-attention block for feature fusion, an LC refinement block for enhanced reconstruction, and LC-guided supervision to ensure perceptually coherent enhancements. We demonstrated our method's effectiveness across various hardware and scenarios, proving its practicality in real-world applications. Code and dataset available at https://github.com/sharif-apu/LSD-TFFormer.
Related papers
- SEE: See Everything Every Time -- Adaptive Brightness Adjustment for Broad Light Range Images via Events [53.79905461386883]
Event cameras, with a high dynamic range exceeding $120dB$, significantly outperform traditional embedded cameras.<n>We propose a novel research question: how to employ events to enhance and adaptively adjust the brightness of images captured under broad lighting conditions.<n>Our framework captures color through sensor patterns, uses cross-attention to model events as a brightness dictionary, and adjusts the image's dynamic range to form a broad light-range representation.
arXiv Detail & Related papers (2025-02-28T14:55:37Z) - BVI-RLV: A Fully Registered Dataset and Benchmarks for Low-Light Video Enhancement [56.97766265018334]
This paper introduces a low-light video dataset, consisting of 40 scenes with various motion scenarios under two distinct low-lighting conditions.
We provide fully registered ground truth data captured in normal light using a programmable motorized dolly and refine it via an image-based approach for pixel-wise frame alignment across different light levels.
Our experimental results demonstrate the significance of fully registered video pairs for low-light video enhancement (LLVE) and the comprehensive evaluation shows that the models trained with our dataset outperform those trained with the existing datasets.
arXiv Detail & Related papers (2024-07-03T22:41:49Z) - Towards Robust Event-guided Low-Light Image Enhancement: A Large-Scale Real-World Event-Image Dataset and Novel Approach [7.974102031202597]
We propose a real-world (indoor and outdoor) dataset comprising over 30K pairs of images and events under both low and normal illumination conditions.
Based on the dataset, we propose a novel event-guided LIE approach, called EvLight, towards robust performance in real-world low-light scenes.
arXiv Detail & Related papers (2024-04-01T00:18:17Z) - BVI-Lowlight: Fully Registered Benchmark Dataset for Low-Light Video Enhancement [44.1973928137492]
This paper introduces a novel low-light video dataset, consisting of 40 scenes in various motion scenarios under two low-lighting conditions.
We provide fully registered ground truth data captured in normal light using a programmable motorized dolly.
We refine them via image-based post-processing to ensure the pixel-wise alignment of frames in different light levels.
arXiv Detail & Related papers (2024-02-03T00:40:22Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
We propose a new low-light image enhancement dataset consisting of misaligned training images with real-world corruptions.
Our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets.
arXiv Detail & Related papers (2022-01-10T03:12:52Z) - CERL: A Unified Optimization Framework for Light Enhancement with
Realistic Noise [81.47026986488638]
Low-light images captured in the real world are inevitably corrupted by sensor noise.
Existing light enhancement methods either overlook the important impact of real-world noise during enhancement, or treat noise removal as a separate pre- or post-processing step.
We present Coordinated Enhancement for Real-world Low-light Noisy Images (CERL), that seamlessly integrates light enhancement and noise suppression parts into a unified and physics-grounded framework.
arXiv Detail & Related papers (2021-08-01T15:31:15Z) - VIDIT: Virtual Image Dataset for Illumination Transfer [18.001635516017902]
We present a novel dataset, the Virtual Image dataset for Illumination Transfer (VIDIT)
VIDIT contains 300 virtual scenes used for training, where every scene is captured 40 times in total: from 8 equally-spaced azimuthal angles, each lit with 5 different illuminants.
arXiv Detail & Related papers (2020-05-11T21:58:03Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.