CAFusion: Controllable Anatomical Synthesis of Perirectal Lymph Nodes via SDF-guided Diffusion
- URL: http://arxiv.org/abs/2503.06919v1
- Date: Mon, 10 Mar 2025 04:59:54 GMT
- Title: CAFusion: Controllable Anatomical Synthesis of Perirectal Lymph Nodes via SDF-guided Diffusion
- Authors: Weidong Guo, Hantao Zhang, Shouhong Wan, Bingbing Zou, Wanqin Wang, Chenyang Qiu, Peiquan Jin,
- Abstract summary: We introduce CAFusion, a novel approach for synthesizing perirectal lymph nodes.<n>By leveraging Signed Distance Functions (SDF), CAFusion generates highly realistic 3D anatomical structures.<n> Experimental results demonstrate that our synthetic data substantially improve segmentation performance.
- Score: 8.311453061101899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lesion synthesis methods have made significant progress in generating large-scale synthetic datasets. However, existing approaches predominantly focus on texture synthesis and often fail to accurately model masks for anatomically complex lesions. Additionally, these methods typically lack precise control over the synthesis process. For example, perirectal lymph nodes, which range in diameter from 1 mm to 10 mm, exhibit irregular and intricate contours that are challenging for current techniques to replicate faithfully. To address these limitations, we introduce CAFusion, a novel approach for synthesizing perirectal lymph nodes. By leveraging Signed Distance Functions (SDF), CAFusion generates highly realistic 3D anatomical structures. Furthermore, it offers flexible control over both anatomical and textural features by decoupling the generation of morphological attributes (such as shape, size, and position) from textural characteristics, including signal intensity. Experimental results demonstrate that our synthetic data substantially improve segmentation performance, achieving a 6.45% increase in the Dice coefficient. In the visual Turing test, experienced radiologists found it challenging to distinguish between synthetic and real lesions, highlighting the high degree of realism and anatomical accuracy achieved by our approach. These findings validate the effectiveness of our method in generating high-quality synthetic lesions for advancing medical image processing applications.
Related papers
- LN-Gen: Rectal Lymph Nodes Generation via Anatomical Features [8.428364324501048]
The complexity of the surrounding anatomical structures and the scarcity of annotated data pose significant challenges.
This study introduces a novel lymph node synthesis technique aimed at generating diverse and realistic synthetic rectal lymph node samples.
arXiv Detail & Related papers (2024-08-27T11:40:23Z) - Optimizing Synthetic Data for Enhanced Pancreatic Tumor Segmentation [1.6321136843816972]
This study critically evaluates the limitations of existing generative-AI based frameworks for pancreatic tumor segmentation.
We conduct a series of experiments to investigate the impact of synthetic textittumor size and textitboundary definition precision on model performance.
Our findings demonstrate that: (1) strategically selecting a combination of synthetic tumor sizes is crucial for optimal segmentation outcomes, and (2) generating synthetic tumors with precise boundaries significantly improves model accuracy.
arXiv Detail & Related papers (2024-07-27T15:38:07Z) - Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
This study demonstrates a synthesis engine for neurovascular segmentation in serial-section optical coherence tomography images.
Our approach comprises two phases: label synthesis and label-to-image transformation.
We demonstrate the efficacy of the former by comparing it to several more realistic sets of training labels, and the latter by an ablation study of synthetic noise and artifact models.
arXiv Detail & Related papers (2024-07-01T16:09:07Z) - Memory-efficient High-resolution OCT Volume Synthesis with Cascaded Amortized Latent Diffusion Models [48.87160158792048]
We introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way.
Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods.
arXiv Detail & Related papers (2024-05-26T10:58:22Z) - ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-real
Novel View Synthesis via Contrastive Learning [102.46382882098847]
We first investigate the effects of synthetic data in synthetic-to-real novel view synthesis.
We propose to introduce geometry-aware contrastive learning to learn multi-view consistent features with geometric constraints.
Our method can render images with higher quality and better fine-grained details, outperforming existing generalizable novel view synthesis methods in terms of PSNR, SSIM, and LPIPS.
arXiv Detail & Related papers (2023-03-20T12:06:14Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Decoupling Shape and Density for Liver Lesion Synthesis Using
Conditional Generative Adversarial Networks [0.0]
The quality and diversity of synthesized data are highly dependent on the annotated data used to train the models.
This paper presents a method for decoupling shape and density for liver lesion synthesis, creating a framework that allows straight-forwardly driving the synthesis.
arXiv Detail & Related papers (2021-06-01T16:45:19Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Generative Modelling of 3D in-silico Spongiosa with Controllable
Micro-Structural Parameters [1.0804061924593265]
We propose to apply recent advances in generative adversarial networks to generate realistic bone structures in-silico.
In a first step, we trained a volumetric generative model in a progressive manner using a Wasserstein objective and gradient penalty.
We were able to simulate the resulting bone structure after deterioration or treatment effects of osteoporosis therapies.
arXiv Detail & Related papers (2020-09-23T18:11:47Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
Confidence Guided SAMR (CG-SAMR) synthesizes data from lesion information to multi-modal anatomic sequences.
module guides the synthesis based on confidence measure about the intermediate results.
experiments on real clinical data demonstrate that the proposed model can perform better than the state-of-theart synthesis methods.
arXiv Detail & Related papers (2020-08-06T20:20:22Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators.
Experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
arXiv Detail & Related papers (2020-06-26T02:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.