Optimizing Synthetic Data for Enhanced Pancreatic Tumor Segmentation
- URL: http://arxiv.org/abs/2407.19284v2
- Date: Tue, 1 Oct 2024 16:41:44 GMT
- Title: Optimizing Synthetic Data for Enhanced Pancreatic Tumor Segmentation
- Authors: Linkai Peng, Zheyuan Zhang, Gorkem Durak, Frank H. Miller, Alpay Medetalibeyoglu, Michael B. Wallace, Ulas Bagci,
- Abstract summary: This study critically evaluates the limitations of existing generative-AI based frameworks for pancreatic tumor segmentation.
We conduct a series of experiments to investigate the impact of synthetic textittumor size and textitboundary definition precision on model performance.
Our findings demonstrate that: (1) strategically selecting a combination of synthetic tumor sizes is crucial for optimal segmentation outcomes, and (2) generating synthetic tumors with precise boundaries significantly improves model accuracy.
- Score: 1.6321136843816972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pancreatic cancer remains one of the leading causes of cancer-related mortality worldwide. Precise segmentation of pancreatic tumors from medical images is a bottleneck for effective clinical decision-making. However, achieving a high accuracy is often limited by the small size and availability of real patient data for training deep learning models. Recent approaches have employed synthetic data generation to augment training datasets. While promising, these methods may not yet meet the performance benchmarks required for real-world clinical use. This study critically evaluates the limitations of existing generative-AI based frameworks for pancreatic tumor segmentation. We conduct a series of experiments to investigate the impact of synthetic \textit{tumor size} and \textit{boundary definition} precision on model performance. Our findings demonstrate that: (1) strategically selecting a combination of synthetic tumor sizes is crucial for optimal segmentation outcomes, and (2) generating synthetic tumors with precise boundaries significantly improves model accuracy. These insights highlight the importance of utilizing refined synthetic data augmentation for enhancing the clinical utility of segmentation models in pancreatic cancer decision making including diagnosis, prognosis, and treatment plans. Our code will be available at https://github.com/lkpengcs/SynTumorAnalyzer.
Related papers
- Cancer-Net SCa-Synth: An Open Access Synthetically Generated 2D Skin Lesion Dataset for Skin Cancer Classification [65.83291923029985]
In the United States, skin cancer ranks as the most commonly diagnosed cancer, presenting a significant public health issue.
Recent advancements in dataset curation and deep learning have shown promise in quick and accurate detection of skin cancer.
Cancer-Net SCa- Synth is an open access synthetically generated 2D skin lesion dataset for skin cancer classification.
arXiv Detail & Related papers (2024-11-08T02:04:21Z) - Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
We show that the best AUC is achieved by the CDI$s$ - optimized modality, outperforming the best gold-standard modality by 0.0044.
Notably, the optimized CDI$s$ modality also achieves AUC values over 0.02 higher than the Unoptimized CDI$s$ value.
arXiv Detail & Related papers (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies.
Medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes.
This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients.
arXiv Detail & Related papers (2024-04-11T21:47:13Z) - Biophysics Informed Pathological Regularisation for Brain Tumour Segmentation [10.466349398419846]
We propose a novel approach that designs brain tumour growth Partial Differential Equation (PDE) models as a regularisation with deep learning.
Our method introduces tumour growth PDE models directly into the segmentation process, improving accuracy and robustness, especially in data-scarce scenarios.
We demonstrate the effectiveness of our framework through extensive experiments on the BraTS 2023 dataset.
arXiv Detail & Related papers (2024-03-14T07:21:46Z) - Enhancing Transformer-Based Segmentation for Breast Cancer Diagnosis
using Auto-Augmentation and Search Optimisation Techniques [3.495246564946556]
This paper introduces a methodology that combines automated image augmentation selection (RandAugment) with search strategies (Tree-based Parzen Estimator)
We empirically validate our approach on breast cancer histology slides, focusing on the segmentation of cancer cells.
Our results show that the proposed methodology leads to segmentation models that are more resilient to variations in histology slides.
arXiv Detail & Related papers (2023-11-18T13:08:09Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.