論文の概要: CineBrain: A Large-Scale Multi-Modal Brain Dataset During Naturalistic Audiovisual Narrative Processing
- arxiv url: http://arxiv.org/abs/2503.06940v1
- Date: Mon, 10 Mar 2025 05:39:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:48:16.391956
- Title: CineBrain: A Large-Scale Multi-Modal Brain Dataset During Naturalistic Audiovisual Narrative Processing
- Title(参考訳): CineBrain: ナラティブ処理における大規模マルチモード脳データセット
- Authors: Jianxiong Gao, Yichang Liu, Baofeng Yang, Jianfeng Feng, Yanwei Fu,
- Abstract要約: CineBrainは脳波とfMRIを同時記録した最初の大規模データセットである。
このユニークなデータセットに基づいて、革新的なマルチモーダルデコーディングフレームワークであるCineSyncを提案する。
脳波とfMRI信号を効果的に融合させ,複雑な視覚刺激の再現性を大幅に向上させる。
- 参考スコア(独自算出の注目度): 43.72049340346747
- License:
- Abstract: In this paper, we introduce CineBrain, the first large-scale dataset featuring simultaneous EEG and fMRI recordings during dynamic audiovisual stimulation. Recognizing the complementary strengths of EEG's high temporal resolution and fMRI's deep-brain spatial coverage, CineBrain provides approximately six hours of narrative-driven content from the popular television series The Big Bang Theory for each of six participants. Building upon this unique dataset, we propose CineSync, an innovative multimodal decoding framework integrates a Multi-Modal Fusion Encoder with a diffusion-based Neural Latent Decoder. Our approach effectively fuses EEG and fMRI signals, significantly improving the reconstruction quality of complex audiovisual stimuli. To facilitate rigorous evaluation, we introduce Cine-Benchmark, a comprehensive evaluation protocol that assesses reconstructions across semantic and perceptual dimensions. Experimental results demonstrate that CineSync achieves state-of-the-art video reconstruction performance and highlight our initial success in combining fMRI and EEG for reconstructing both video and audio stimuli. Project Page: https://jianxgao.github.io/CineBrain.
- Abstract(参考訳): 本稿では,脳波とfMRIを同時記録した最初の大規模データセットであるCineBrainについて紹介する。
EEGの高時間分解能とfMRIの深脳空間カバレッジの相補的な強みを認識したCineBrainは、人気テレビシリーズ『ビッグバン理論』から約6時間の物語駆動コンテンツを提供している。
このユニークなデータセットに基づいてCineSyncを提案する。CineSyncは、マルチモーダルフュージョンエンコーダと拡散に基づくニューラル遅延デコーダを統合した革新的なマルチモーダルデコードフレームワークである。
脳波とfMRI信号を効果的に融合させ,複雑な視覚刺激の再現性を大幅に向上させる。
厳密な評価を容易にするため,セマンティック次元および知覚次元の再構成を評価する包括的評価プロトコルであるCine-Benchmarkを導入する。
実験により、CineSyncは最先端のビデオ再構成性能を達成し、fMRIと脳波を組み合わせて映像と音声の両方の刺激を再構成する最初の成功を強調した。
Project Page: https://jianxgao.github.io/CineBrain.com
関連論文リスト
- CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - NeuroClips: Towards High-fidelity and Smooth fMRI-to-Video Reconstruction [29.030311713701295]
我々は,fMRIから高忠実度・スムーズな映像をデコードする革新的なフレームワークであるNeuroClipsを提案する。
NeuroClipsは、ビデオの再構成にセマンティックサクタを使用し、セマンティックの精度と一貫性を誘導し、低レベルの知覚の詳細を捉えるために知覚再構成器を使用する。
NeuroClipsは8FPSで最大6秒のスムーズな高忠実度ビデオ再構成を実現する。
論文 参考訳(メタデータ) (2024-10-25T10:28:26Z) - Reverse the auditory processing pathway: Coarse-to-fine audio reconstruction from fMRI [20.432212333539628]
本稿では,機能的磁気共鳴画像(fMRI)データに基づく,より粗い音響再構成手法を提案する。
我々は,3つの公開fMRIデータセットであるBrain2Sound,Brain2Music,Brain2Speechについて検証を行った。
復号化時に意味的プロンプトを用いることで,意味的特徴が最適でない場合に,再構成音声の品質を向上させる。
論文 参考訳(メタデータ) (2024-05-29T03:16:14Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Animate Your Thoughts: Decoupled Reconstruction of Dynamic Natural Vision from Slow Brain Activity [13.04953215936574]
脳活動から人間のダイナミックビジョンを再構築する2段階モデルMind-Animatorを提案する。
fMRIの段階では,fMRIから意味的,構造的,運動的特徴を分離する。
機能とビデオの段階では、これらの機能はインフレータブル拡散(Stable Diffusion)を使ってビデオに統合される。
論文 参考訳(メタデータ) (2024-05-06T08:56:41Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
本稿では,fMRIデータを復号化するための新たな二相フレームワークであるNeuroCineを紹介する。
公開されているfMRIデータセットでテストした結果,有望な結果が得られた。
このモデルが既存の脳構造や機能と一致し,その生物学的妥当性と解釈可能性を示すことが示唆された。
論文 参考訳(メタデータ) (2024-02-02T17:34:25Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIPはタスクに依存しないfMRIベースの脳復号モデルである。
脳の活動、画像、およびテキストの間のモダリティギャップを埋める。
BrainCLIPは、高い意味的忠実度で視覚刺激を再構築することができる。
論文 参考訳(メタデータ) (2023-02-25T03:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。