NukesFormers: Unpaired Hyperspectral Image Generation with Non-Uniform Domain Alignment
- URL: http://arxiv.org/abs/2503.07004v1
- Date: Mon, 10 Mar 2025 07:38:46 GMT
- Title: NukesFormers: Unpaired Hyperspectral Image Generation with Non-Uniform Domain Alignment
- Authors: Jiaojiao Li, Shiyao Duan, Haitao XU, Rui Song,
- Abstract summary: We introduce contrastive learning to align geometric and spectral distributions of unpaired data.<n>We map the frequency representations of dual-domain input and thoroughly mining the null space.<n>It establishes a new benchmark in UnHIG.
- Score: 8.49203851084488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inherent difficulty in acquiring accurately co-registered RGB-hyperspectral image (HSI) pairs has significantly impeded the practical deployment of current data-driven Hyperspectral Image Generation (HIG) networks in engineering applications. Gleichzeitig, the ill-posed nature of the aligning constraints, compounded with the complexities of mining cross-domain features, also hinders the advancement of unpaired HIG (UnHIG) tasks. In this paper, we conquer these challenges by modeling the UnHIG to range space interaction and compensations of null space through Range-Null Space Decomposition (RND) methodology. Specifically, the introduced contrastive learning effectively aligns the geometric and spectral distributions of unpaired data by building the interaction of range space, considering the consistent feature in degradation process. Following this, we map the frequency representations of dual-domain input and thoroughly mining the null space, like degraded and high-frequency components, through the proposed Non-uniform Kolmogorov-Arnold Networks. Extensive comparative experiments demonstrate that it establishes a new benchmark in UnHIG.
Related papers
- GMapLatent: Geometric Mapping in Latent Space [51.317738404571514]
Cross-domain generative models based on encoder-decoder AI architectures have attracted much attention in generating realistic images.
We introduce a canonical latent space representation based on geometric mapping to align the cross-domain latent spaces in a rigorous and precise manner.
Experiments on gray-scale and color images validate the efficiency, efficacy and applicability of GMapLatent.
arXiv Detail & Related papers (2025-03-30T12:02:36Z) - Mixed-granularity Implicit Representation for Continuous Hyperspectral Compressive Reconstruction [16.975538181162616]
This study introduces a novel method using implicit neural representation for continuous hyperspectral image reconstruction.
By leveraging implicit neural representations, the MGIR framework enables reconstruction at any desired spatial-spectral resolution.
arXiv Detail & Related papers (2025-03-17T03:37:42Z) - HSRMamba: Contextual Spatial-Spectral State Space Model for Single Hyperspectral Super-Resolution [41.93421212397078]
Mamba has demonstrated exceptional performance in visual tasks due to its powerful global modeling capabilities and linear computational complexity.<n>In HSISR, Mamba faces challenges as transforming images into 1D sequences neglects the spatial-spectral structural relationships between locally adjacent pixels.<n>We propose HSRMamba, a contextual spatial-spectral modeling state space model for HSISR, to address these issues both locally and globally.
arXiv Detail & Related papers (2025-01-30T17:10:53Z) - Unleashing Correlation and Continuity for Hyperspectral Reconstruction from RGB Images [64.80875911446937]
We propose a Correlation and Continuity Network (CCNet) for HSI reconstruction from RGB images.<n>For the correlation of local spectrum, we introduce the Group-wise Spectral Correlation Modeling (GrSCM) module.<n>For the continuity of global spectrum, we design the Neighborhood-wise Spectral Continuity Modeling (NeSCM) module.
arXiv Detail & Related papers (2025-01-02T15:14:40Z) - HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks [7.06787067270941]
The integration of hyperspectral imaging (HSI) and LiDAR data within new linear feature spaces offers a promising solution to the challenges posed by the high-dimensionality and redundancy inherent in HSIs.
This study introduces a dual linear fused space framework that capitalizes on bidirectional reversed convolutional neural network (CNN) pathways, coupled with a specialized spatial analysis block.
The proposed method not only enhances data processing and classification accuracy, but also mitigates the computational burden typically associated with advanced models such as Transformers.
arXiv Detail & Related papers (2024-11-30T01:08:08Z) - DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
Hyperspectral image (HSI) classification is challenging due to spatial variability caused by complex imaging conditions.
We propose a tri-spectral image generation pipeline that transforms HSI into high-quality tri-spectral images.
Our proposed method outperforms state-of-the-art methods for HSI classification.
arXiv Detail & Related papers (2023-04-19T18:32:52Z) - Hyperspectral Image Super-Resolution via Dual-domain Network Based on
Hybrid Convolution [6.3814314790000415]
This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet)
To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain.
To further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain.
arXiv Detail & Related papers (2023-04-10T13:51:28Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
We propose a spectral enhanced rectangle Transformer to model the spatial and spectral correlation in hyperspectral images.
For the former, we exploit the rectangle self-attention horizontally and vertically to capture the non-local similarity in the spatial domain.
For the latter, we design a spectral enhancement module that is capable of extracting global underlying low-rank property of spatial-spectral cubes to suppress noise.
arXiv Detail & Related papers (2023-04-03T09:42:13Z) - Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image
Translation [56.44946660061753]
This paper proposes a universal regularization technique called maximum spatial perturbation consistency (MSPC)
MSPC enforces a spatial perturbation function (T ) and the translation operator (G) to be commutative (i.e., TG = GT )
Our method outperforms the state-of-the-art methods on most I2I benchmarks.
arXiv Detail & Related papers (2022-03-23T19:59:04Z) - Implicit Neural Representation Learning for Hyperspectral Image
Super-Resolution [0.0]
Implicit Neural Representations (INRs) are making strides as a novel and effective representation.
We propose a novel HSI reconstruction model based on INR which represents HSI by a continuous function mapping a spatial coordinate to its corresponding spectral radiance values.
arXiv Detail & Related papers (2021-12-20T14:07:54Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
We propose a unified paradigm combining the spatial and spectral properties for hyperspectral image restoration.
The proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity.
Experiments on HSI denoising, compressed reconstruction, and inpainting tasks, with both simulated and real datasets, demonstrate its superiority.
arXiv Detail & Related papers (2020-10-24T15:53:56Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.