論文の概要: Multimodal Human-AI Synergy for Medical Imaging Quality Control: A Hybrid Intelligence Framework with Adaptive Dataset Curation and Closed-Loop Evaluation
- arxiv url: http://arxiv.org/abs/2503.07032v1
- Date: Mon, 10 Mar 2025 08:16:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:52:15.933434
- Title: Multimodal Human-AI Synergy for Medical Imaging Quality Control: A Hybrid Intelligence Framework with Adaptive Dataset Curation and Closed-Loop Evaluation
- Title(参考訳): 医用画像品質管理のためのマルチモーダルヒューマンAIシナジー:適応的データセットキュレーションとクローズドループ評価を用いたハイブリッドインテリジェンスフレームワーク
- Authors: Zhi Qin, Qianhui Gui, Mouxiao Bian, Rui Wang, Hong Ge, Dandan Yao, Ziying Sun, Yuan Zhao, Yu Zhang, Hui Shi, Dongdong Wang, Chenxin Song, Shenghong Ju, Lihao Liu, Junjun He, Jie Xu, Yuan-Cheng Wang,
- Abstract要約: 画像品質評価における大規模言語モデル (LLM) の評価と標準化の報告を行う。
Gemini 2.0-Flash は CXR タスクの Macro F1 スコアを90点達成し、強力な一般化を示したが、細かい性能は制限された。
DeepSeek-R1はCTで62.23%のリコール率で評価され、他のモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 16.19033330311087
- License:
- Abstract: Medical imaging quality control (QC) is essential for accurate diagnosis, yet traditional QC methods remain labor-intensive and subjective. To address this challenge, in this study, we establish a standardized dataset and evaluation framework for medical imaging QC, systematically assessing large language models (LLMs) in image quality assessment and report standardization. Specifically, we first constructed and anonymized a dataset of 161 chest X-ray (CXR) radiographs and 219 CT reports for evaluation. Then, multiple LLMs, including Gemini 2.0-Flash, GPT-4o, and DeepSeek-R1, were evaluated based on recall, precision, and F1 score to detect technical errors and inconsistencies. Experimental results show that Gemini 2.0-Flash achieved a Macro F1 score of 90 in CXR tasks, demonstrating strong generalization but limited fine-grained performance. DeepSeek-R1 excelled in CT report auditing with a 62.23\% recall rate, outperforming other models. However, its distilled variants performed poorly, while InternLM2.5-7B-chat exhibited the highest additional discovery rate, indicating broader but less precise error detection. These findings highlight the potential of LLMs in medical imaging QC, with DeepSeek-R1 and Gemini 2.0-Flash demonstrating superior performance.
- Abstract(参考訳): 医療画像品質管理(QC)は正確な診断には不可欠であるが、従来のQC法は労働集約的で主観的である。
そこで本研究では,画像品質評価およびレポート標準化において,大規模言語モデル(LLM)を体系的に評価する,医用画像QCのための標準化データセットと評価フレームワークを構築した。
具体的には,まず161個の胸部X線写真と219個のCTレポートのデータセットを構築し,匿名化を行った。
そして、リコール、精度、F1スコアに基づいて、Gemini 2.0-Flash、GPT-4o、DeepSeek-R1を含む複数のLCMを評価し、技術的エラーと矛盾を検出する。
Gemini 2.0-Flash は CXR タスクで 90 の Macro F1 スコアを達成した。
DeepSeek-R1はCTレポートで62.23倍のリコール率で評価され、他のモデルよりも優れていた。
しかし、蒸留された変種は性能が悪く、InternLM2.5-7B-chatは高い発見率を示し、より広いが精度の低い誤り検出を示した。
これらの結果は、DepSeek-R1 と Gemini 2.0-Flash による医用画像 QC における LLM の可能性を強調した。
関連論文リスト
- Rethinking Medical Anomaly Detection in Brain MRI: An Image Quality Assessment Perspective [14.39502951611029]
構造類似度指数の損失をl1損失と組み合わせた核融合品質損失関数を提案する。
また,正常領域と異常領域の平均強度比(AIR)を高めるデータ前処理戦略を導入し,異常の識別を改善した。
提案したIQAアプローチは,BraTS21(T2,FLAIR)およびMSULBデータセット上のDice係数(DICE)とAUPRC(Area Under the Precision-Recall Curve)において,大幅な改善(>10%)を達成している。
論文 参考訳(メタデータ) (2024-08-15T15:55:07Z) - Enhancing Diagnostic Reliability of Foundation Model with Uncertainty Estimation in OCT Images [41.002573031087856]
光コヒーレンストモグラフィー(OCT)における11個の網膜状態を検出するために,不確実性推定(FMUE)を用いた基礎モデルを開発した。
FMUEは2つの最先端アルゴリズムであるRETFoundとUIOSよりも96.76%高いF1スコアを獲得し、しきい値戦略を98.44%に改善した。
我々のモデルは、F1スコアが高い2人の眼科医(95.17%対61.93% &71.72%)より優れている。
論文 参考訳(メタデータ) (2024-06-18T03:04:52Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
本研究は,冠動脈造影画像(CA)の狭窄検出におけるFL(Federated Learning)の使用について検討した。
アンコナのOspedale Riuniti(イタリア)で取得した200人の患者1219枚の画像を含む2施設の異種データセットについて検討した。
データセット2には、文献で利用可能な90人の患者からの7492のシーケンシャルな画像が含まれている。
論文 参考訳(メタデータ) (2023-10-30T11:13:40Z) - CXR-LLAVA: a multimodal large language model for interpreting chest
X-ray images [3.0757789554622597]
本研究の目的は,胸部X線画像(CXR)を解釈するためのオープンソースのマルチモーダル大言語モデル(CXR-LLAVA)を開発することである。
トレーニングでは,592,580個のCXRを収集し,そのうち374,881個のX線写真異常のラベルが得られた。
主な病理所見に対する診断成績と,ヒト放射線技師による放射線学的報告の受容性について検討した。
論文 参考訳(メタデータ) (2023-10-22T06:22:37Z) - Reconstruction of Patient-Specific Confounders in AI-based Radiologic
Image Interpretation using Generative Pretraining [12.656718786788758]
本稿では,DiffChestと呼ばれる自己条件拡散モデルを提案し,胸部X線画像のデータセット上で訓練する。
DiffChest氏は、患者固有のレベルでの分類を説明し、モデルを誤解させる可能性のある要因を視覚化する。
本研究は,医用画像分類における拡散モデルに基づく事前訓練の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-09-29T10:38:08Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - RCoNet: Deformable Mutual Information Maximization and High-order
Uncertainty-aware Learning for Robust COVID-19 Detection [12.790651338952005]
2019年のコロナウイルス(COVID-19)感染は世界中に広まり、現在、世界中で大きな医療課題となっている。
胸部X線(CXR)画像中のCOVID-19の検出はCTよりも高速で低コストであり, 診断, 評価, 治療に有用である。
Em Deformable Mutual Information Maximization (DeIM), em Mixed High-order Moment Feature (MMMF) と em Multi- を併用した,ロバストな COVID-19 検出のための新しいディープネットワークである em RCoNet$k_s$ を提案する。
論文 参考訳(メタデータ) (2021-02-22T15:13:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。