論文の概要: Enhancing Diagnostic Reliability of Foundation Model with Uncertainty Estimation in OCT Images
- arxiv url: http://arxiv.org/abs/2406.16942v1
- Date: Tue, 18 Jun 2024 03:04:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:21:45.782297
- Title: Enhancing Diagnostic Reliability of Foundation Model with Uncertainty Estimation in OCT Images
- Title(参考訳): OCT画像の不確かさ推定による基礎モデルの診断信頼性向上
- Authors: Yuanyuan Peng, Aidi Lin, Meng Wang, Tian Lin, Ke Zou, Yinglin Cheng, Tingkun Shi, Xulong Liao, Lixia Feng, Zhen Liang, Xinjian Chen, Huazhu Fu, Haoyu Chen,
- Abstract要約: 光コヒーレンストモグラフィー(OCT)における11個の網膜状態を検出するために,不確実性推定(FMUE)を用いた基礎モデルを開発した。
FMUEは2つの最先端アルゴリズムであるRETFoundとUIOSよりも96.76%高いF1スコアを獲得し、しきい値戦略を98.44%に改善した。
我々のモデルは、F1スコアが高い2人の眼科医(95.17%対61.93% &71.72%)より優れている。
- 参考スコア(独自算出の注目度): 41.002573031087856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inability to express the confidence level and detect unseen classes has limited the clinical implementation of artificial intelligence in the real-world. We developed a foundation model with uncertainty estimation (FMUE) to detect 11 retinal conditions on optical coherence tomography (OCT). In the internal test set, FMUE achieved a higher F1 score of 96.76% than two state-of-the-art algorithms, RETFound and UIOS, and got further improvement with thresholding strategy to 98.44%. In the external test sets obtained from other OCT devices, FMUE achieved an accuracy of 88.75% and 92.73% before and after thresholding. Our model is superior to two ophthalmologists with a higher F1 score (95.17% vs. 61.93% &71.72%). Besides, our model correctly predicts high uncertainty scores for samples with ambiguous features, of non-target-category diseases, or with low-quality to prompt manual checks and prevent misdiagnosis. FMUE provides a trustworthy method for automatic retinal anomalies detection in the real-world clinical open set environment.
- Abstract(参考訳): 信頼度を表現できず、目に見えないクラスを検出できないことは、現実世界における人工知能の臨床的実装を制限している。
我々は,光コヒーレンストモグラフィー(OCT)における11個の網膜状態を検出するために,不確実性推定(FMUE)を用いた基礎モデルを開発した。
内部テストセットでは、FMUEは2つの最先端アルゴリズムであるRETFoundとUIOSよりも96.76%高いF1スコアを獲得し、しきい値戦略を98.44%に改善した。
他のOCT装置から得られた外部テストセットでは、FMUEは閾値の前後で88.75%と92.73%の精度を達成した。
我々のモデルは、F1スコアが高い2人の眼科医(95.17%対61.93% &71.72%)より優れている。
また,本モデルでは,不明瞭な特徴,非標的カテゴリーの疾患,手動検査の迅速化,誤診防止のための低品質な検査結果に対して,精度の高い不確実性スコアを正しく予測する。
FMUEは、実際の臨床オープンセット環境で自動的に網膜異常を検出するための信頼できる方法を提供する。
関連論文リスト
- A Federated Learning Framework for Stenosis Detection [70.27581181445329]
本研究は,冠動脈造影画像(CA)の狭窄検出におけるFL(Federated Learning)の使用について検討した。
アンコナのOspedale Riuniti(イタリア)で取得した200人の患者1219枚の画像を含む2施設の異種データセットについて検討した。
データセット2には、文献で利用可能な90人の患者からの7492のシーケンシャルな画像が含まれている。
論文 参考訳(メタデータ) (2023-10-30T11:13:40Z) - Reconstruction of Patient-Specific Confounders in AI-based Radiologic
Image Interpretation using Generative Pretraining [12.656718786788758]
本稿では,DiffChestと呼ばれる自己条件拡散モデルを提案し,胸部X線画像のデータセット上で訓練する。
DiffChest氏は、患者固有のレベルでの分類を説明し、モデルを誤解させる可能性のある要因を視覚化する。
本研究は,医用画像分類における拡散モデルに基づく事前訓練の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-09-29T10:38:08Z) - Uncertainty-inspired Open Set Learning for Retinal Anomaly
Identification [71.06194656633447]
9つの網膜条件の基底像をトレーニングし,不確実性に着想を得たオープンセット(UIOS)モデルを構築した。
しきい値戦略を持つUIOSモデルはF1スコア99.55%、97.01%、91.91%を達成した。
UIOSは、高い不確実性スコアを正しく予測し、非ターゲットの網膜疾患、低品質の眼底画像、および非基本画像のデータセットを手動でチェックする必要があることを示唆した。
論文 参考訳(メタデータ) (2023-04-08T10:47:41Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs [0.0]
そこで本研究では,1回の検査で複数の病態を検出できる多ラベル疾患予測モデルを提案する。
提案モデルでは,AUCスコアが0.896であった。
論文 参考訳(メタデータ) (2022-02-08T00:43:57Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Critical Evaluation of Deep Neural Networks for Wrist Fracture Detection [1.0617212070722408]
関節リウマチは最も頻度の高い骨折である。
近年のDeep Learning(DL)分野の進歩は、畳み込みニューラルネットワークを用いて手首骨折検出を自動化できることを示している。
以上の結果から,DeepWristのような最先端のアプローチは,挑戦的なテストセットにおいて大幅に性能が低下していることが判明した。
論文 参考訳(メタデータ) (2020-12-04T13:35:36Z) - Integrating uncertainty in deep neural networks for MRI based stroke
analysis [0.0]
2次元磁気共鳴(MR)画像における脳梗塞の確率を示すベイズ畳み込みニューラルネットワーク(CNN)を提案する。
CNNは511例のコホートで、画像レベルでは95.33%の精度を達成し、非バイエルン人に比べて2%の大幅な改善を示した。
論文 参考訳(メタデータ) (2020-08-13T09:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。