論文の概要: UAVTwin: Neural Digital Twins for UAVs using Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2504.02158v1
- Date: Wed, 02 Apr 2025 22:17:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:56:41.577615
- Title: UAVTwin: Neural Digital Twins for UAVs using Gaussian Splatting
- Title(参考訳): UAVTwin: ガウススティングを用いたUAVのためのニューラルデジタルツイン
- Authors: Jaehoon Choi, Dongki Jung, Yonghan Lee, Sungmin Eum, Dinesh Manocha, Heesung Kwon,
- Abstract要約: UAVTwinは,無人航空機(UAV)に埋め込まれた下流モデルの訓練を行うための,実環境からデジタル双生児を作成する方法である。
これは、背景を再構築するための3Dガウススティング(3DGS)と、多様な外観と動作を複数のポーズで表示する制御可能な合成人間モデルを統合することで実現される。
- 参考スコア(独自算出の注目度): 57.63613048492219
- License:
- Abstract: We present UAVTwin, a method for creating digital twins from real-world environments and facilitating data augmentation for training downstream models embedded in unmanned aerial vehicles (UAVs). Specifically, our approach focuses on synthesizing foreground components, such as various human instances in motion within complex scene backgrounds, from UAV perspectives. This is achieved by integrating 3D Gaussian Splatting (3DGS) for reconstructing backgrounds along with controllable synthetic human models that display diverse appearances and actions in multiple poses. To the best of our knowledge, UAVTwin is the first approach for UAV-based perception that is capable of generating high-fidelity digital twins based on 3DGS. The proposed work significantly enhances downstream models through data augmentation for real-world environments with multiple dynamic objects and significant appearance variations-both of which typically introduce artifacts in 3DGS-based modeling. To tackle these challenges, we propose a novel appearance modeling strategy and a mask refinement module to enhance the training of 3D Gaussian Splatting. We demonstrate the high quality of neural rendering by achieving a 1.23 dB improvement in PSNR compared to recent methods. Furthermore, we validate the effectiveness of data augmentation by showing a 2.5% to 13.7% improvement in mAP for the human detection task.
- Abstract(参考訳): UAVTwinは,無人航空機(UAV)に埋め込まれた下流モデルの訓練を容易にするために,実環境からデジタル双生児を作成する方法である。
具体的には,UAVの視点から,複雑なシーンの背景において動作中のさまざまな人間のインスタンスなど,前景コンポーネントの合成に焦点をあてる。
これは、背景を再構築するための3Dガウススティング(3DGS)と、多様な外観と動作を複数のポーズで表示する制御可能な合成人間モデルを統合することで実現される。
我々の知る限り、UAVTwinは3DGSに基づく高忠実なデジタル双生児を生み出すことができるUAVベースの知覚のための最初のアプローチである。
提案手法は,複数の動的オブジェクトを持つ実世界の環境におけるデータ拡張を通じて,下流モデルを大幅に強化する。
これらの課題に対処するために,3次元ガウススプラッティングのトレーニングを強化するために,新しい外観モデリング戦略とマスクリファインメントモジュールを提案する。
最近の手法と比較して,PSNRの1.23dB改善を達成し,高画質のニューラルレンダリングを実証した。
さらに、人間の検出作業におけるmAPの2.5%から13.7%の改善を示すことにより、データ拡張の有効性を検証した。
関連論文リスト
- HuGDiffusion: Generalizable Single-Image Human Rendering via 3D Gaussian Diffusion [50.02316409061741]
HuGDiffusionは、シングルビュー入力画像から人間の文字の新しいビュー合成(NVS)を実現するための学習パイプラインである。
本研究では,1つの画像から抽出したヒトの事前情報に基づいて,拡散に基づくフレームワークを用いて3DGS属性の集合を生成することを目的とする。
我々のHuGDiffusionは最先端の手法よりも優れた性能を示している。
論文 参考訳(メタデータ) (2025-01-25T01:00:33Z) - DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
本稿では,ガウスをベースとしたレコンストラクタを用いて,リアルな3Dアセットを生成することで,マルチビュー画像を直接認識するDSplatを紹介した。
実験の結果,DSplatsは高品質で空間的に一貫した出力を生成できるだけでなく,単一画像から3次元再構成への新たな標準も設定できることがわかった。
論文 参考訳(メタデータ) (2024-12-11T07:32:17Z) - A Lesson in Splats: Teacher-Guided Diffusion for 3D Gaussian Splats Generation with 2D Supervision [65.33043028101471]
本研究では,ガウスプレートの拡散モデルであるSplatDiffusionを導入し,単一画像から3次元構造を生成する。
既存の方法は決定論的フィードフォワード予測に依存しており、2Dデータからの3D推論の本質的な曖昧さを扱う能力を制限する。
論文 参考訳(メタデータ) (2024-12-01T00:29:57Z) - RetinaGS: Scalable Training for Dense Scene Rendering with Billion-Scale 3D Gaussians [12.461531097629857]
我々は、適切なレンダリング方程式を用いた3DGSの一般的なモデル並列トレーニング手法であるRetinaGSを設計する。
本手法により,原始的な数を増やすと,視覚的品質が向上する傾向が明らかになる。
また、完全なMatrixCityデータセット上に10億以上のプリミティブを持つ3DGSモデルをトレーニングする最初の試みを実演する。
論文 参考訳(メタデータ) (2024-06-17T17:59:56Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - Domain Adaptive 3D Pose Augmentation for In-the-wild Human Mesh Recovery [32.73513554145019]
Domain Adaptive 3D Pose Augmentation (DAPA)は、Wildのシナリオにおけるモデルの一般化能力を向上するデータ拡張手法である。
DAPAによる微調整が3DPWとAGORAのベンチマークの結果を効果的に改善できることを定量的に示す。
論文 参考訳(メタデータ) (2022-06-21T15:02:31Z) - UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body
Decoupling 3D Model [58.70130563417079]
我々は,身体の発生を自由に制御できる,一連の分離されたパラメータを持つ新しい3次元人体モデルを導入する。
既存の手動注釈付きDensePose-COCOデータセットと比較して、合成されたUltraPoseは、アノテーションのコストと誤差を伴わずに、超高密度な画像-地上対応を持つ。
論文 参考訳(メタデータ) (2021-10-28T16:24:55Z) - Synthetic Data and Hierarchical Object Detection in Overhead Imagery [0.0]
衛星画像における低・ゼロサンプル学習を向上させるための新しい合成データ生成および拡張技術を開発した。
合成画像の有効性を検証するために,検出モデルと2段階モデルの訓練を行い,実際の衛星画像上で得られたモデルを評価する。
論文 参考訳(メタデータ) (2021-01-29T22:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。