FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks
- URL: http://arxiv.org/abs/2311.01483v5
- Date: Fri, 18 Oct 2024 06:38:11 GMT
- Title: FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks
- Authors: Zheng Lin, Zhe Chen, Zihan Fang, Xianhao Chen, Xiong Wang, Yue Gao,
- Abstract summary: A large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX.
Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc.
We propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites.
- Score: 18.213174641216884
- License:
- Abstract: Recently, a large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX. Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc. However, the ground station (GS) may be incapable of downloading such a large volume of raw sensing data for centralized model training due to the limited contact time with LEO satellites (e.g. 5 minutes). Therefore, federated learning (FL) has emerged as the promising solution to address this problem via on-device training. Unfortunately, to enable FL on LEO satellites, we still face three critical challenges that are i) heterogeneous computing and memory capabilities, ii) limited uplink rate, and iii) model staleness. To this end, we propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites. Specifically, we first present a novel sub-structure scheme to enable heterogeneous local model training considering different computing, memory, and communication constraints on LEO satellites. Additionally, we propose a pseudo-synchronous model aggregation strategy to dynamically schedule model aggregation for compensating model staleness. To further demonstrate the effectiveness of the FedSN, we evaluate it using space modulation recognition and remote sensing image classification tasks by leveraging the data from real-world satellite networks. Extensive experimental results demonstrate that FedSN framework achieves higher accuracy, lower computing, and communication overhead than the state-of-the-art benchmarks and the effectiveness of each components in FedSN.
Related papers
- Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
We propose a distributed collaborative beamforming (DCB)-based uplink communication paradigm for enabling ground-space direct communications.
DCB treats the terminals that are unable to establish efficient direct connections with the low Earth orbit (LEO) satellites as distributed antennas.
We propose an evolutionary multi-objective deep reinforcement learning algorithm to obtain the desirable policies.
arXiv Detail & Related papers (2024-04-11T03:13:02Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
This paper proposes a novel FL-SEC framework that empowers satellites to execute large-scale machine learning (ML) tasks onboard efficiently.
Key components include personalized learning via divide-and-conquer, which identifies and eliminates redundant satellite images, and orbital model retraining, which generates an aggregated "orbital model" per orbit and retrains it before sending to the ground station.
Our approach dramatically reduces FL convergence time by nearly 30 times, and satellite energy consumption down to as low as 1.38 watts, all while maintaining an exceptional accuracy of up to 96%.
arXiv Detail & Related papers (2024-01-28T02:01:26Z) - Communication-Efficient Federated Learning for LEO Satellite Networks
Integrated with HAPs Using Hybrid NOMA-OFDM [1.3121410433987561]
This paper proposes NomaFedHAP, a novel FL-SatCom approach tailored to LEO satellites.
NomaFedHAP utilizes high-altitude platforms (HAPs) as distributed parameter servers (PS) to enhance satellite visibility.
We derive a closed-form expression of the outage probability for satellites in near and far shells, as well as for the entire system.
arXiv Detail & Related papers (2024-01-01T07:07:27Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - Optimizing Federated Learning in LEO Satellite Constellations via
Intra-Plane Model Propagation and Sink Satellite Scheduling [3.096615629099617]
Satellite edge computing (SEC) allows each satellite to train an ML model onboard and uploads only the model to the ground station.
This paper proposes FedLEO, a novel federated learning (FL) framework that overcomes the limitation (slow convergence) of existing FL-based solutions.
Our results show that FedLEO drastically expedites FL convergence, without sacrificing -- in fact it considerably increases -- the model accuracy.
arXiv Detail & Related papers (2023-02-27T00:32:01Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
Low Earth Obit (LEO) satellite constellations have seen a sharp increase of deployment in recent years.
To apply machine learning (ML) in such applications, the traditional way of downloading satellite data such as imagery to a ground station (GS) is not desirable.
We show that existing FL solutions do not fit well in such LEO constellation scenarios because of significant challenges such as excessive convergence delay and unreliable wireless channels.
arXiv Detail & Related papers (2022-05-15T08:22:52Z) - FedSpace: An Efficient Federated Learning Framework at Satellites and
Ground Stations [10.250105527148731]
Large-scale deployments of low Earth orbit (LEO) satellites collect massive amount of Earth imageries and sensor data.
It is often infeasible to download all the high-resolution images and train these machine learning models on the ground because of limited downlink bandwidth, sparse connectivity, and regularization constraints on the imagery resolution.
We propose Federated Learning (FL), where ground stations and satellites collaboratively train a global ML model without sharing the captured images on the satellites.
arXiv Detail & Related papers (2022-02-02T20:09:27Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
We propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH)
eRACH is a model-free approach that emerges through interaction with the non-stationary network environment.
Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput.
arXiv Detail & Related papers (2021-12-03T07:44:45Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.