論文の概要: When Trust Collides: Decoding Human-LLM Cooperation Dynamics through the Prisoner's Dilemma
- arxiv url: http://arxiv.org/abs/2503.07320v2
- Date: Wed, 28 May 2025 07:51:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 15:04:27.388042
- Title: When Trust Collides: Decoding Human-LLM Cooperation Dynamics through the Prisoner's Dilemma
- Title(参考訳): 信頼が衝突したとき:囚人のジレンマを通して人間とLLMの協力のダイナミクスをデコードする
- Authors: Guanxuan Jiang, Shirao Yang, Yuyang Wang, Pan Hui,
- Abstract要約: 本研究では,大規模言語モデル(LLM)エージェントに対する人間の協調的態度と行動について検討する。
その結果, エージェントアイデンティティがほとんどの協調行動に有意な影響を及ぼすことが明らかとなった。
これらの知見は,自律エージェントとの競争におけるヒト適応の理解に寄与する。
- 参考スコア(独自算出の注目度): 10.143277649817096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large language models (LLMs) become increasingly capable of autonomous decision-making, they introduce new challenges and opportunities for human-AI cooperation in mixed-motive contexts. While prior research has primarily examined AI in assistive or cooperative roles, little is known about how humans interact with AI agents perceived as independent and strategic actors. This study investigates human cooperative attitudes and behaviors toward LLM agents by engaging 30 participants (15 males, 15 females) in repeated Prisoner's Dilemma games with agents differing in declared identity: purported human, rule-based AI, and LLM agent. Behavioral metrics, including cooperation rate, decision latency, unsolicited cooperative acts and trust restoration tolerance, were analyzed to assess the influence of agent identity and participant gender. Results revealed significant effects of declared agent identity on most cooperation-related behaviors, along with notable gender differences in decision latency. Furthermore, qualitative responses suggest that these behavioral differences were shaped by participants interpretations and expectations of the agents. These findings contribute to our understanding of human adaptation in competitive cooperation with autonomous agents and underscore the importance of agent framing in shaping effective and ethical human-AI interaction.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自律的な意思決定能力がますます向上するにつれて、混合モチベーションの文脈において、人間とAIが協力する新たな課題と機会がもたらされる。
これまでの研究では、AIを補助的または協力的な役割において主に研究してきたが、人間が独立的かつ戦略的アクターとして認識されるAIエージェントとどのように相互作用するかについてはほとんど分かっていない。
本研究では, LLMエージェントに対する人間の協調的態度と行動について, 30人の参加者(男性15名, 女性15名)と, 宣言された同一性に異なるエージェント(人間, ルールベースAI, LLMエージェント)を交互に行うことで検討した。
協力率,意思決定遅延,孤立しない協調行動,信頼回復寛容などの行動指標を分析し,エージェントの同一性や性差の影響について検討した。
その結果、宣言されたエージェントのアイデンティティが、ほとんどの協力関係の行動に有意な影響を及ぼし、決定待ち時間に有意な性別差が認められた。
さらに質的な反応は、これらの行動の違いが参加者の解釈とエージェントの期待によって形成されたことを示唆している。
これらの知見は、自律エージェントとの競争における人間の適応の理解に寄与し、効果的で倫理的な人間とAIの相互作用を形成する上でのエージェントフレーミングの重要性を浮き彫りにしている。
関連論文リスト
- Human-AI Collaboration: Trade-offs Between Performance and Preferences [5.172575113585139]
人間の行動に配慮したエージェントは、純粋にパフォーマンスを最大化するエージェントよりも好まれることを示す。
我々は、不平等-逆転効果が人間の選択の原動力であることの証拠を見つけ、人々がチームへの有意義な貢献を可能にする協力的なエージェントを好むことを示唆している。
論文 参考訳(メタデータ) (2025-02-28T23:50:14Z) - Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gymは、エージェント、人間、タスク環境間の非同期で三分割的なインタラクションを可能にするフレームワークである。
シミュレーション条件と実環境条件の両方において,Co-Gymを3つの代表的なタスクでインスタンス化する。
その結果、協調作業員はタスクパフォーマンスにおいて、完全に自律的なエージェントよりも一貫して優れていたことが判明した。
論文 参考訳(メタデータ) (2024-12-20T09:21:15Z) - Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
心の理論(ToM)は、他人を理解する上で重要な能力として、人間の協調とコミュニケーションに大きな影響を及ぼす。
Mutual Theory of Mind (MToM) は、ToM能力を持つAIエージェントが人間と協力するときに発生する。
エージェントのToM能力はチームのパフォーマンスに大きな影響を与えず,エージェントの人間的理解を高めていることがわかった。
論文 参考訳(メタデータ) (2024-09-13T13:19:48Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Multi-Agent, Human-Agent and Beyond: A Survey on Cooperation in Social Dilemmas [15.785674974107204]
社会ジレンマにおける協力の研究は、長年、様々な分野の基本的なトピックであった。
人工知能の最近の進歩は、この分野を大きく変えた。
この調査は、AIの交差点における3つの重要な領域と、社会的ジレンマにおける協力について調査する。
論文 参考訳(メタデータ) (2024-02-27T07:31:30Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - The Machine Psychology of Cooperation: Can GPT models operationalise prompts for altruism, cooperation, competitiveness and selfishness in economic games? [0.0]
GPT-3.5大言語モデル(LLM)を用いて,協調的,競争的,利他的,利己的行動の自然言語記述を操作可能とした。
被験者と実験心理学研究で用いられるのと同様のプロトコルを用いて,課題環境を記述するためのプロンプトを用いた。
この結果から,LLM が様々な協調姿勢の自然言語記述を適切な作業行動の記述にある程度翻訳できることが示唆された。
論文 参考訳(メタデータ) (2023-05-13T17:23:16Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
我々は、人間とAIのコラボレーションは対話的であり、人間がAIエージェントの作業を監視し、エージェントが理解し活用できるフィードバックを提供するべきだと論じている。
本研究では, IGLUコンペティションによって定義された課題である, マイニングクラフトのような世界における対話型言語理解タスクを用いて, これらの方向を探索する。
論文 参考訳(メタデータ) (2023-04-21T05:37:59Z) - Assessing Human Interaction in Virtual Reality With Continually Learning
Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study [6.076137037890219]
本研究では,人間と学習の継続する予測エージェントの相互作用が,エージェントの能力の発達とともにどのように発達するかを検討する。
我々は、強化学習(RL)アルゴリズムから学習した予測が人間の予測を増大させる仮想現実環境と時間ベースの予測タスクを開発する。
以上の結果から,人的信頼はエージェントとの早期の相互作用に影響され,信頼が戦略的行動に影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2021-12-14T22:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。